首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(本讲适合初中)1梅氏定理及其逆定理1·1梅氏定理一条直线截△ABc的三边BC,CA,AB或其延长线于D,E,F,则刀DC五AF一.一-一二二._刀C石A FB=工。证法一(平三二*一‘/月BD_S△FBDDes全;ne’CE_S△cE,_S△cED石亘一s△丽蔽一亏乙而石,仁里=芝叠‘些迎土S全卫旦D=逻些卫卫少刀且S△人;:+S△人EDS△人;D,AF_S么人牙D尸丑S△二BD,BDDCCEEAAF_;乡石一人·行线成比例法) 如图1,过C作CK才AB,交FD于K,则1·2梅氏逆定理在△ABC的边B矶CA,AB或其延长线上分别取点D,刀,F.如果有BDDCCE AF刀AF刀“1,那么D,E,刀DDC_刀F…  相似文献   

2.
本文对平面几何中著名的梅涅劳斯定理进行剖析,然后作出推广。定理一(梅涅劳斯定理)一直线l分别截△ABC的三边(或边的延长线)AB、BC、CA于D、E、F.则AD/DB·BE/EC·CF/FA=1 在许多教科书里的介绍中,都是直线l与△ABC的两条边相交,与第三边的延长线相交.其实,若直线l与三角形三条边都不相交,其结论仍是成立的。  相似文献   

3.
梅涅劳斯是古希腊著名数学家。他首先发现了一条直线截三角形三边或其延长线截得的线段的规律。这三角形称为梅氏三角形,这直线称为梅氏直线。梅氏直线与梅氏三角形三边或其延长线的交点称为梅氏分点(简称分点),这一定理称为梅氏定理。其内容是: 如图1、图2,直线DEF分别出△ABC三边或其延长线于D、E、F.则  相似文献   

4.
1 基础知识梅涅劳斯定理 设A′、B′、C′分别是△ABC的三边BC、CA、AB或其延长线上的点 .若A′、B′、C′三点共线 ,则 BA′A′C·CB′B′A·AC′C′B=1 .①证明 :如图 1 ,过A作AD∥C′A′交BC延长线于D ,则  CB′B′A=CA′A′D,AC′C′B =DA′A′B ,故  BA′A′C·CB′B′A·AC′C′B =BA′A′C·CA′A′D·DA′A′B=1 .梅涅劳斯定理的逆定理 设A′、B′、C′分别是△ABC的三边BC ,CA ,AB或其延长线上的点 ,若BA′A′C·CB′B′A·AC′C′B =1 ,②则A′、B′、C′三点共线 .证明 :设直线A…  相似文献   

5.
平行线分线段成比例定理的推论是;平行于三角形一边的直线截其他两边(或两边的延长线).所得的对应线段成比例.用图形直观反映是:  相似文献   

6.
讨论了三角形之内两线相交的比例问题.虽然,梅涅劳斯定理也是描述了三角形之内两线相交(也可以理解为一条线与三角形两边及第三边延长线相交,说法不同,本质一样)的情况中线段比例定量关系,但是这里的两线都是从三角形的顶点所引出;而本篇论文既讨论了三角形顶点引线的情况,也讨论了边引线的情况,共有一个定理,五种情况,十个公式,将三角形内两线相交的情况全部囊括其中.  相似文献   

7.
张慧 《中等数学》2014,(3):8-11
梅涅劳斯定理是平面几何中的一颗闪耀的明珠,是解决众多平面几何问题的重要桥梁.本文利用梅涅劳斯定理或其逆定理解决有关证明点共线,求解线段比、面积、角等问题.  相似文献   

8.
译注:该文引用了两个不难理解的新概念(广义欧氏平面(这是射影几何中的概念),与重心坐标),而使有关证明相当简洁,有关定理的结果及应用实例都很有启发性。塞瓦定理与梅涅劳斯定理在讨论诸线的共点与诸点的共线方面应用很广,其结果早已从三角形推广到多边形及空间图形。此外,这两个定理由于具有对偶性还可以相互导出。本文仅就三角形的情形给出一个推广,使  相似文献   

9.
证明共线的重要定理梅涅劳斯定理,也是求二线段的比的一个重要定理。事实上,利用这定理来解决这一类问题,可以不引或者少引辅助线,避免不必要的重复,使问题简单化。在中学课本中,这个定理被当作一个练习题,没有作为一个定理,更未阐述它的重要作用。因此有必要作一介绍,以供同志们参考。梅涅劳斯(Menelaus)定理(下称梅氏定理)是: 设X、Y、Z各是△ABC三边BC、CA、AB或其延长线上的点,则它们共线的必要且充分条件为:  相似文献   

10.
我们先看下面的定理:定理一直线截△ABC三边所在直线于D,E,F,求证:BF/FA·AE/CE·CD/BD=1证明过C作CG//AB交DE于G,;乏G 刀F AE(】〕“.月了.〔厄’石石 月F AF(l子~入歹.之贾互.后了一1.B CD 这就是著名的梅涅劳斯定理:一条直图飞线截三角形的三边,得到的三组比的积为定值1.在数学竞赛中用该定理解有关的几何题,常显得巧妙、简捷,而且不需引辅助线.本文试用该定理解决一类竞赛题. 例1如图2,△ABC中,AD为中线,E为AD上一点,‘_1‘_.一,。一,nAE一言AD,AF一1·“cm·求AB. (2001年山东省初中数学竟赛题)一竞赛辅导一解△…  相似文献   

11.
章礼抗 《中学教研》2004,(10):25-27
梅涅劳斯定理是《高中数学竞赛大纲》中基本要求掌握的内容;在平面几何中证明三点共线方面功不可没.但是在立体几何中也同样不同凡响.下面笔者通过几例来浅探它的应用及其规律,以供鉴赏.  相似文献   

12.
平面向量的一个主要应用是解决一些平面几何问题,塞瓦定理和梅涅劳斯定理是平面几何中的两个重要定理,人们自然想到如何利用平面向量的知识证明这两个定理,这里给出一种向量证法. 现将两个定理叙述如下: 塞瓦定理 如图1,设O是△ABC内任意一点,AO,BO,CO分别交对边于D,E,F,则 AF/FB· BD/DC · CE/EA=1.(1) 梅涅劳斯定理 如图1,设一直线与△ADC的边AC,AD及CD延长线分别交于E,O,B,则 AO/OD· DB/BC· CE/EA=1 (2) 为了证明定理,先给出一个简单的引理: 若→OA=λ→ OB+μ→ OC(λ,μ为常数),则A,B,C3点共线的充要条件是λ+μ=1.  相似文献   

13.
梅涅劳斯定理:直线L与△ABC的三边AB,BC,CA分别交于X,Y,Z三点,当且仅当λ_1λ_2λ_3=-1。其中λ_1=(AX)/(XB),λ_2=(BY)/(YC),λ_3=(CZ)/(ZA)。下面试将该定理推广到n维空间。 设V是实数域R上的一个n维向量空间R~n,对于V中任一对向量ξ=(X_(11),X_(12),…,X_(1n)),η=(X_(21),X_(22),…,X_(2n))。记d(ξ,η)=~(1/2)(sum from i=1 to n(X_(2i)-X_(1i))~2),定义内积  相似文献   

14.
梅涅劳斯定理是<高中数学竞赛大纲>中基本要求掌握的内容;在平面几何中证明三点共线方面功不可没.但是在立体几何中也同样不同凡响.本文通过几例来浅探它的应用及其规律.以供鉴赏.  相似文献   

15.
一、梅涅劳斯(Menelaus)定理简介 如果一直线顺次与三角形ABC的三边AB、BC、CA或其延长线交于M、N、K三点,则:AM/MB·BN/NC·CK/KA=1。  相似文献   

16.
利用调和点列及梅涅劳斯定理对2022年高考数学全国乙卷第20题进行探究,并利用梅涅劳斯定理巧解几何中的相关问题。  相似文献   

17.
梅涅劳斯定理在空间的推广及应用   总被引:2,自引:0,他引:2  
定理1 设在△ABC三边(所在直线)AB、BC、CA上各取一点X,y,Z(异于顶点A,B,C),则此三点共线的充分必要条件是 AX/XB·BY/YC·CZ/ZA=1. 这是平面几何中的梅涅劳斯(Menelaus)定理,它是证明三点共线的一个有力工具。本文将此定理在空间作一推广,供大家参考。 定理2 (如图1)设在四面体ABCD的棱AB,BC,CD,DA上各取一点P,Q,M,N(异于顶点A,B,C,D),则此四点共面的充分必要条件是  相似文献   

18.
19.
梅涅劳斯定理的变形在解竞赛题中的应用   总被引:1,自引:0,他引:1  
梅涅劳斯定理的变形在解竞赛题中的应用贵州省威宁县哲觉中学朱家海在近些年来国际国内的数学竞赛试题中,经常出现一类“从三角形顶点向对边引线段被一点或数点分成定比”的问题.为了寻找解决这类伺题的一般规律,本文提出四四边形中梅涅劳斯(Menelaus)定理的...  相似文献   

20.
鲁国良 《中学教研》2000,(11):16-18
在平面几何的教学和初中数学竞赛的辅导中,往往会碰到一些几何题的解法或证明过程难而繁.缺少一些直观性的解题,证明方法.本文拟在中学数学教学大纲范围内用梅涅劳斯、塞瓦氏两定理来证明平面几何中的某些几何题,使证明过程化难为易.一些问题分析、思考更加直观形象,思路更为简单扼要,达到事半功倍之目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号