首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the extent to which nonhedonically different differential outcomes involving feeder location control pigeons’ comparison choices in matching to sample. In Experiment 1, we showed that differential feeder location outcomes associated with each of two samples can facilitate delayed-matching accuracy. In Experiment 2, we found positive transfer following training on two matching tasks with differential feeder location outcomes when samples from one task were replaced by samples from the other task. In Experiment 3, we found that when differential-outcome expectations could no longer serve as the cues for comparison choice, sample stimuli continued to exert some control over choice of comparisons. The results indicate that differential outcomes (involving feeder location) that presumably do not differ in hedonic value are sufficient to control comparison choice. Thus, the differential hedonic value of the outcome elicited by the sample does not appear to be a requirement of the differential-outcome effect. Furthermore, these differential outcomes appear to augment matching accuracy, but they do not eliminate control by the samples.  相似文献   

2.
Two sets of experiments examined how differential outcomes affect conditional stimulus control by the samples in delayed matching-to-sample. Pigeons were initially trained on symbolic delayed matching with reinforcing outcomes that were either differential or nondiffereatial with respect to the samples. In one set of experiments, the outcome manipulation involved different (p = 1.0 vs. 0.2) versus the same (p = 0.6) probabilities of food; in the other, food and no-food outcomes were used. Following initial acquisition and mixed-delay tests, the matching procedure in each study was discontinued while the samples were nondifferentially reinforced with the same probability of food, or with food and no food, respectively. When later retested on delayed matching with those nondifferential outcomes, birds initially trained with different reinforcement probabilities matched at the same levels of accuracy as those trained with the same probability. By contrast, birds initially trained with food versus no-food outcomes showed lower levels of matching accuracy than their nondifferential controls. Subsequent transfer tests showed that matching performances by the differential birds in both studies had been originally cued in part by differential outcome expectancies. Apparently, the expectancies based upon different probabilities of food provided a source of conditional stimulus control that did not compete with the samples. By contrast, the expectation of food versus no food reduced (overshadowed) sample-stimulus control.  相似文献   

3.
In Experiment 1, three food-deprived pigeons received trials that began with red or green illumination of the center pecking key. Two or four pecks on this sample key turned it off and initiated a 0- to 10-sec delay. Following the delay, the two outer comparison keys were illuminated, one with red and one with green light. In one condition, a single peck on either of these keys turned the other key off and produced either grain reinforcement (if the comparison that was pecked matched the preceding sample) or the intertrial interval (if it did not match). In other conditions, 3 or 15 additional pecks were required to produce reinforcement or the intertrial interval. The frequency of pecking the matching comparison stimulus (matching accuracy) decreased as the delay increased, increased as the sample ratio was increased, and decreased as the comparison ratio was increased. The results of Experiment 2 suggested that higher comparison ratios adversely affect matching accuracy primarily by delaying reinforcement for choosing the correct comparison. The results of Experiment 3, in which delay of reinforcement for choosing the matching comparison was manipulated, confirmed that delayed reinforcement decreases matching accuracy.  相似文献   

4.
In two experiments, pigeons were trained on many-to-one delayed matching in which samples of food and one hue were each associated with one shape comparison, and samples of no food and a different hue were each associated with a second shape comparison. When later tested with delays between sample and comparison stimuli, pigeons showed nonparallel delay functions, typically found with food and no-food samples (i.e., steeply declining food-sample delay functions, and relatively flat no-food-sample delay functions). Furthermore, the slopes of the hue-sample delay functions were similar to those on the food/no-food-sample trials. In Experiment 2, following many-toone delayed matching, when the hue samples were associated with new comparisons and then food and no-food samples replaced the hues, evidence was found for transfer of training indicative of the common coding of samples associated with the same comparison in original training. The transfer results suggest that the asymmetrical hue-sample functions resulted from the common coding of samples associated with the same comparison.  相似文献   

5.
Delayed matching-to-sample performance by pigeons was interfered with by displaying a monochromatic annulus around the center (sample) pecking key. The wavelength of the annulus and its point of interpolation within a trial were varied to determine possible differential effects on matching accuracy. Experiment 1 showed that delayed matching was most disrupted when the interference stimulus (570 nm, 630 nm, or achromatic white) appeared during the delay interval of a trial. Little if any disruption occurred when the interference stimulus was present during the sample and choice periods. The spectral relationship between the chromatic interference stimuli (570 and 630 nm) and the sample stimuli (570 and 630 nm) did not consistently influence the degree to which matching accuracy was affected in any interpolation condition. Experiment 2 found a similar pattern of within-trial effects when the interference stimulus was simply a change from a white achromatic annulus to a chromatic one. This finding indicates that illumination changes, such as the popular houselight variation, are not necessary to produce interference in delayed matching to sample. Even with illumination held constant, however, performance was not differentially sensitive to the similarity between interference and sample stimulus wavelengths. It is suggested that other experiments showing similarity effects in interference of delayed matching to sample were conducted in such a way that subjects confused the interfering stimuli with the samples.  相似文献   

6.
Task difficulty in delayed matching-to-sample tasks (DMTS) is increased by increasing the length of a retention interval. When tasks become more difficult, choice behavior becomes more susceptible to bias produced by unequal reinforcer ratios. Delaying reinforcement from choice behavior also increases both task difficulty and the biasing effect of unequal reinforcer probability. Six pigeons completed nine DMTS conditions with retention intervals of 0, 2, 4, 6, and 8 sec, in which reinforcer delays of 0, 2, and 4 sec were combined with ratios of reinforcer probabilities of .5/.5, .2/.8, and .8/.2 for correct red and green responses. Discriminability (logd) decreased with both increasing retention interval duration and increasing reinforcer delay. Sensitivity to reinforcement, the tendency for ratios of choice responses to follow unequal reinforcer probabilities, also increased as a function of both increasing retention interval and increasing reinforcer delay. The result is consistent with the view that remembering in DMTS tasks is a discriminated operant in which increasing task difficulty increases sensitivity to reinforcement.  相似文献   

7.
Pigeons were first trained on many-to-one delayed matching in which pairs of hue and line-orientation samples were associated with individual comparison stimuli. They were then trained to match two of the original samples (either hues or line orientations) to new comparisons, after which 2-sec delays were inserted between the samples and comparisons. In testing, the remaining samples were presented as interpolated stimuli during the delays. When the interpolated stimulus had been associated with the same comparison as the sample in many-to-one matehing, performance was significantly more accurate than when it had been associated with a different comparison. This finding adds to the evidence that samples sharing common comparison associations are commonly coded.  相似文献   

8.
Two pigeons matched to sample in a three-key operant conditioning chamber. In Experiment I, two different kinds of samples were presented on the center key.Element samples were members of one of two sample sets — colors (a red or blue disk) or lines (a vertical or horizontal orientation of a set of white lines). These samples were followed by their respective sample sets on the side keys as comparison stimuli.Compound samples consisted of a set of lines superimposed on a colored disk. Following these samples, either sample set could appear as comparison stimuli. Matching to compound samples was less accurate than matching to element samples. One interpretation is that sharing of attention among elements of a compound sample weakened stimulus control by each element. A different interpretation is that an element sample controlled matching better because it was physically identical to a comparison stimulus whereas a compound sample was not. Experiments II–IV evaluated this “generalization decrement” alternative by testing element- vs. compound sample control with both element and compound comparison stimuli. Irrelevant elements were added to form compound comparison stimuli, some of which were physically identical to a preceding compound sample, but never identical to an element sample. In all experiments, the addition of irrelevant elements of comparison stimuli reduced sample control. However, the generalization decrement hypothesis failed to predict how differences in performance maintained by element and compound samples were affected by different tests of sample control. Matching accuracy appeared to be independently determined by the number of elements in a sample and whether irrelevant elements were present during tests of sample control.  相似文献   

9.
Coding strategies developed in the acquisition of delayed conditional discriminations can be assessed by independently manipulating sample and comparison memory load. Two stimulus dimensions that can affect memory load were examined: Number of stimuli in the sample and comparison sets (two vs. four) was manipulated between groups in a 2×2 design, and discriminability of sample and comparison stimuli (hues vs. lines) was manipulated between counterbalancing subgroups and within subjects. The results indicated large effects of sample discriminability but not of comparison discriminability, evidence for retrospective coding. There was also a significant effect of number of stimuli in the comparison set (although only with hard-to-discriminate samples) but not of number of stimuli in the sample set, evidence for prospective coding. These findings suggest evidence for retrospective coding with easy-to-discriminate samples, independently of number of stimuli in the comparison set, and evidence for prospective coding with hard-to-discriminate samples.  相似文献   

10.
Accuracy on even-numbered trials was assessed as a function of (1) the relation between the sample on the immediately preceding trial and that on the current trial and (2) the length of the intertrial interval (ITI) that intervened between odd- and even-numbered trials. A relatively long interval intervened between pairs of trials in the clustered-dyads procedure, whereas this interval was equal to the ITI in the massed-trials procedure. Both procedures revealed an intertrial agreement effect in that accuracy was higher when the sample on the immediately preceding trial was identical rather than opposite. A decrease in the magnitude of this effect at longer ITIs was apparent only in the clustered-dyads procedure. The insensitivity of the intertrial agreement effect to variations in ITI in the massed-trials procedure may reflect floor effects and the carryover of memory from multiple prior trials that mask the true magnitude of the intertrial agreement effect at short ITIs.  相似文献   

11.
Rats were initially trained in a symbolic delayed matching-to-sample task either to discriminate hedonic samples that consisted of food or no food or to discriminate tone samples that differed in frequency and location. The retention functions for both the hedonic and tone samples were asymmetric, with forgetting of the food sample or the high-frequency tone occurring more rapidly than forgetting of the no-food sample or the low-frequency tone. Next, many-to-one (MTO) training was given in which tone samples were added for the rats initially trained with hedonic samples, and hedonic samples were added for the rats initially trained with tone samples. For both groups, a food sample and a tone sample (tone-F) were associated with responding to one lever (e.g., stationary), and a no-food sample and a different tone sample (tone-NF) were associated with responding to the alternative lever (e.g., moving). During retention testing, we found equivalent forgetting for the food and no-food samples, but forgetting of the tone-F sample occurred more rapidly than forgetting of the tone-NF sample. This is the first MTO study to suggest that rats, like pigeons, may use hedonic samples as the basis for the common coding of nonhedonic samples in MTO delayed matching.  相似文献   

12.
Pigeons were trained on delayed matching-to-sample trials in which red and green sample stimuli were equally often followed by color comparisons and by line-orientation comparisons. The color samples were preceded and accompanied by cues (a triangle or a black dot) that signaled whether the comparisons on that trial would be colors or lines. Length of the retention interval was manipulated during testing, and probe trials were included on which the dimension of the comparison stimuli either was cued incorrectly or was not cued. Accuracy on incorrectly cued and on no-cue trials was less than that on correctly cued trials, and the magnitude of this effect was not influenced by the length of the retention interval. Accuracy on incorrectly cued and on no-cue trials was equivalent, and was greater than chance. The data are inconsistent with two dual-coding interpretations of the effects of incorrectly cuing the dimension of the comparison stimuli in which it is held that both retrospective and prospective sample coding occurs in this task.  相似文献   

13.
In a delayed matching-to-sample procedure, pigeons chose a comparison stimulus that matched a sample stimulus presented earlier in the trial. The duration of the delay between sample-stimulus presentation and comparison-stimulus presentation was either varied over five values within each session or held constant within each session but varied over five blocks of sessions. Accuracy of matching to sample was higher overall with variable delays than with delays fixed within sessions. The result indicates that remembering depends on the temporal context provided by delay intervals.  相似文献   

14.
Transfer-of-control tests typically show the development of acquired equivalence between samples occasioning the same comparison choice in pigeons’ many-to-one matching-to-sample. Specifically, when some of those samples are later explicitly trained to occasion new comparison choices, the remaining samples immediately exert control over the new choices as well. In the present experiments, we examined whether or not this transfer effect depends on the order in which the various sample-comparison relations in training are learned. One group of pigeons initially acquired 0-delay many-to-one matching with four samples and two comparisons, followed by 0-delay matching with two of those samples and two new comparisons. Another group of pigeons learned the two-sample matching task first, followed by many-to-one matching. When subsequently tested for their ability to match the remaining samples from many-to-one matching to the comparisons used in the two-sample task, both groups showed comparable levels of transfer. These findings challenge the view that common anticipatory processes ostensibly arising from the samples in many-to-one matching are necessary mediators for the subsequent transfer effects indicative of acquired sample equivalence.  相似文献   

15.
Pigeons were trained on a two-stimulus-shape (a plus and a circle) complex conditional discrimination that required birds to match sample and comparison stimuli on some trials and to mismatch on other trials, depending on the level of chamber illumination (bright or dark). Following acquisition, the birds were transferred to a novel color (red and green) task. For half of the birds, the contingenties between levels of illumination and the match/mismatch response requirements were consistent with training (nonreversal condition). For the remaining birds, the contingencies between levels of illumination and match/mismatch response requirements were the opposite of those established in training (reversal condition). Birds in the nonreversal condition acquired the color match/mismatch task at a significantly faster rate than birds in the reversal condition. These results indicate that relation-based responding (generalized matching/ mismatching) is subject to discriminative control.  相似文献   

16.
Past evidence that pigeons may adopt a single-code/default strategy to solve duration sample discriminations may be attributable to the similarity between the intertrial interval (ITI) and the retention interval. The present experiments tested whether pigeons would adopt a single-code/default strategy when possible ITI-retention-interval ambiguity was eliminated and sample salience was increased. Previous studies of duration sample discriminations that have purported to show evidence for the use of a single-code/default coding strategy have used durations of 0, 2, and 10 sec (Zentall, Klein, & Singer, 2004). However, the results of Experiment 1 suggest that the use of a 0-sec sample may produce an artifact resulting in inadvertent present/absent sample matching. In Experiment 2, when pigeons were trained with three nonzero duration samples (2, 8, and 32 sec), clear evidence for the use of a single-code/default strategy was found.  相似文献   

17.
18.
Four experiments assessed the role of reinforcement expectancies in the trial spacing effect obtained in delayed matching-to-sample by pigeons. In Experiment 1, a differential outcome (DO) group received reinforcement with a probability of 1.0 for correct comparison responses following one sample stimulus and a probability of 0.2 for correct comparison responses following the other sample stimulus. The nondifferential outcome (NDO) group received reinforcement with a probability of 0.6 for correct responses to either stimulus. While matching accuracy was higher for the DO group than for the NDO group, both groups showed an equivalent decline in accuracy as the intertriai interval (ITI) duration was decreased. However, within the DO group, ITI duration affected performance on low-probability-of-reinforcement trials but not on high-probability-of-reinforcement trials. In Experiment 2, delay interval (DI) duration was 5, 10, or 15 sec and accuracy was higher for the DO group than for the NDO group at all DI durations. In addition, accuracy decreased similarly on high- and low-probability-of-reinforcement trials for the DO group as DI was increased. In Experiment 3, all birds were studied under DO conditions and ITI duration was manipulated along with DI duration. At the short DI duration, decreasing ITI duration had a detrimental effect on low-probability-of-reinforcement trials but no effect on high-probability-of-reinforcement trials. At the long DI duration, decreasing ITI duration had detrimental effects on both types of trials. In Experiment 4, unsignaled ITI reinforcers disrupted accuracy when the DI was long and when the ITI was short. The applicability of scalar expectancy theory to these data is discussed.  相似文献   

19.
Pigeons were trained to match temporal (2 and 8 sec of keylight) and color (red and green) samples to vertical and horizontal comparison stimuli. In Experiment 1, samples that were associated with the same correct comparison stimulus displayed similar retention functions; and there was no significant choose-short effect following temporal samples. This finding was replicated in Phase 1 of Experiment 2 for birds maintained on the many-to-one mapping, and it was also obtained in birds that had been switched to a one-to-one mapping by changing the comparison stimuli following color samples. However, in Phase 2 of Experiment 2, when the one-to-one mapping was produced by changing the comparison stimuli following temporal samples, a significant choose-short effect was observed. In Experiment 3, intratrial interference tests gave evidence of temporal summation effects when either temporal presamples or color presamples preceded temporal targets. This occurred even though these interference tests followed delay tests that failed to reveal significant choose-short effects. The absence of significant choose-short effects in Experiment 1 and in Phase 1 of Experiment 2 indicates that temporal samples are not retrospectively and analogically coded when temporal and nontemporal samples are mapped onto the same set of comparisons The interference test results suggest that the temporal summation effect arises from nonmemorial properties of the timing system and is independent of the memory code being used  相似文献   

20.
Pigeons’ delayed matching performance on Trial n was examined as a function of whether the correct and incorrect comparison stimuli from Trial n?1 were maintained in the same role on Trial n (positive transitions), were reversed in role on Trial n (negative transitions), or were absent on Trial n (neutral transitions). Relative to neutral transitions, positive transitions did not significantly facilitate performance. Negative transitions, however, produced significant proactive interference on Trial n, and the magnitude of proactive interference was greater when the Trial n retention interval was 1 sec than when it was 0 sec. As the intertriai interval increased from 2 to 10 sec, the amount of interference dissipated. The results suggest that a prior delayed matching trial can serve as a significant source of forgetting but not a significant source of facilitation on an immediately following delayed matching trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号