首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students’ conceptual understanding of thermal concepts in everyday contexts across several school years and to analyse the variables—school year, science subjects currently being studied, and science subjects previously studied in thermal energy—that influence students’ thermal conceptual understanding. The TCE, which was administered to 515 Korean students from years 10–12, was developed in Australia, using students’ alternative conceptions derived from the research literature. The conceptual structure comprised four groups—heat transfer and temperature changes, boiling, heat conductivity and equilibrium, and freezing and melting—using 19 of the 26 items in the original questionnaire. Depending on the year group, 25–55% of students experienced difficulties in applying scientific concepts in everyday contexts. Years of schooling, science subjects currently studied and physics topics previously studied correlated with development of students’ conceptual understanding, especially in topics relating to heat transfer, temperature scales, specific heat capacity, homeostasis, and thermodynamics. Although students did improve their conceptual understandings in later years of schooling, they still had difficulties in relating the scientific concepts to their experiences in everyday contexts. The study illustrates the utility of using a pencil-and-paper questionnaire to identify students’ understanding of thermal concepts in everyday situations and provides a baseline for Korean students’ achievement in terms of physics in everyday contexts, one of the objectives of the Korean national curriculum reforms.  相似文献   

2.
Abstract

This study examines elementary and secondary prospective teachers’ perceptions of the ways in which their experiences as tutors in school‐based tutoring programs influenced their professional development. Data collected from a survey questionnaire, reflective papers, and individual and focus group interviews revealed five main ways that these undergraduate and graduate education students perceived the tutoring experiences contributed to their professional growth. They described development in the following understandings: school students, pedagogical strategies, relationships with colleagues in school settings, the teaching/learning process, and reflective practice. All of these understandings were reported as increasing their self‐confidence as developing educators.  相似文献   

3.
4.

Science teacher education has long sought to educate new science teachers to more fully understand “Science-for-all” and prepare them to effectively navigate diverse contexts. To adopt this “Science-for-all” mantra, we need to address what the labeling (i.e., categorical labeling and/or mislabeling) of students with disabilities means for science teacher education. This paper provides a critical inquiry to ground the claim that disability operates subversively and unrecognized as a marker of difference similar to labels that produce exclusion in science education (e.g., race, class, and gender). Using a phenomenographic design, this research studied graduate students’ conceptualizations of disability as they progressed through the only required diversity course at a large, urban university in the American northeast. Primary data sources included in-depth, pre-/post-course interviews with supplemental data collected from biweekly course reflections. Phenomenographic data analyses addressed to what extent these graduate students embraced a disability studies perspective relative to disability—i.e., viewing disability beyond merely individual deficit. Findings suggest that the course sustained the relatively static conceptualizations about disability held by the participants related to individual deficiency rather than pushing for more critical views of disability beyond deficiency. Implications are discussed in relation to multicultural science teacher education course goals.

  相似文献   

5.
Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage.

Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective?

Design &; method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective.

Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning ‘Supporting pupils’ own investigations’ and ‘Guiding analysis and conclusions.’ The subjectively perceived problems comprise concerns about ‘Teachers’ abilities’ and ‘Pupils’ abilities,’ ‘Differentiated instruction’ and institutional frame ‘Conditions’ while the self-reflectively noticed problems mainly comprise concerns about ‘Allowing inquiry,’ ‘Instructional Aspects,’ and ‘Pupils’ behavior.’

Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these three perspectives.  相似文献   

6.
This paper reports an examination on gender differences in lunar phases understanding of 123 students (70 females and 53 males). Middle‐level students interacted with the Moon through observations, sketching, journalling, two‐dimensional and three‐dimensional modelling, and classroom discussions. These lunar lessons were adapted from the Realistic Explorations in Astronomical Learning (REAL) curriculum. Students’ conceptual understandings were measured through analysis of pre‐test and post‐test results on a Lunar Phases Concept Inventory (LPCI) and a Geometric Spatial Assessment (GSA). The LPCI was used to assess conceptual learning of eight science and four mathematics domains. The GSA was used to assess learning of the same four mathematical domains; however, the GSA test items were not posed within a lunar context. Results showed both male and female groups to make significant gains in understanding on the overall LPCI test scores as well as significant gains on five of the eight science domains and on three of the four mathematics domains. The males scored significantly higher than the females on the science domain, phase—Sun/Earth/Moon positions, and on the mathematics domain geometric spatial visualisation. GSA results found both male and female groups achieving a significant increase in their test scores on the overall GSA. Females made significant gains on the GSA mathematics domains, periodic patterns and cardinal directions, while males made significant gains on only the periodic patterns domain. Findings suggest that both scientific and mathematical understandings can be significantly improved for both sexes through the use of spatially focused, inquiry‐oriented curriculum such as REAL.  相似文献   

7.

Researchers of students’ concepts and conceptual change frequently draw analogies to the history of science. The analogy is generally presented when comparing students’ scientific concepts to similar ones in the history of science. We have tried to show the importance of this analogy on a higher level ‐‐ that of understanding the process of conceptual change in general among students.

This article outlines a number of lines in the philosophy of science and analyses differences between the perspectives of a number of broadly constructivist positions which have developed during this century.

The analysis is used to clarify the theoretical basis on which research into student conceptual change is conducted and interpreted.  相似文献   

8.
ABSTRACT

Graduate students regularly teach undergraduate STEM courses and can positively impact students’ understanding of science. Yet little research examines graduate students’ knowledge about nature of science (NOS) or instructional strategies for teaching graduate students about NOS. This exploratory study sought to understand how a 1-credit Teaching in Higher Education course that utilised an explicit, reflective, and mixed-context approach to NOS instruction impacted STEM graduate students’ NOS conceptions and teaching intentions. Participants included 13 graduate students. Data sources included the Views of Nature of Science (VNOS-Form C) questionnaire administered pre- and post-instruction, semi-structured interviews with a subset of participants, and a NOS-related course project. Prior to instruction participants held many alternative NOS conceptions. Post-instruction, participants’ NOS conceptions improved substantially, particularly in their understandings of theories and laws and the tentative nature of scientific knowledge. All 12 participants planning to teach NOS intended to use explicit instructional approaches. A majority of participants also integrated novel ideas to their intended NOS instruction. These results suggest that a teaching methods course for graduate students with embedded NOS instruction can address alternative NOS conceptions and facilitate intended use of effective NOS instruction. Future research understanding graduate students' NOS understandings and actual NOS instruction is warranted.  相似文献   

9.
With increasing numbers of students learning science through a second language in many school contexts, there is a need for research to focus on the impact language has on students’ understanding of science concepts. Like other countries, Brunei has adopted a bilingual system of education that incorporates two languages in imparting its curriculum. For the first three years of school, Brunei children are taught in Malay and then for the remainder of their education, instruction is in English. This research is concerned with the influence that this bilingual education system has on children’s learning of science. The purpose was to document the patterns of Brunei students’ developing understandings of the concepts of living and non-living things and examine the impact in the change in language as the medium of instruction. A cross-sectional case study design was used in one primary school. Data collection included an interview (n = 75), which consisted of forced-response and semi-structured interview questions, a categorisation task and classroom observation. Data were analysed quantitatively and qualitatively. The results indicate that the transition from Malay to English as the language of instruction from Primary 4 onwards restricted the students’ ability to express their understandings about living things, to discuss related scientific concepts and to interpret and analyse scientific questions. From a social constructivist perspective these language factors will potentially impact on the students’ cognitive development by limiting the expected growth of the students’ understandings of the concepts of living and non-living things. A paper accepted by Research in Science Education, August, 2006.  相似文献   

10.
Background: In Bangladesh, a common science curriculum caters for all students at the junior secondary level. Since this curriculum is for all students, its aims are both to build a strong foundation in science while still providing students with the opportunities to use science in everyday life – an aim consistent with the notion of scientific literacy.

Purpose: This paper reports Bangladeshi science teachers’ perspectives and practices in regard to the promotion of scientific literacy.

Sample: Six science teachers representing a range of geographical locations, school types with different class sizes, lengths of teaching experience and educational qualifications.

Design and method: This study employed a case study approach. The six teachers and their associated science classes (including students) were considered as six cases. Data were gathered through observing the teachers’ science lessons, interviewing them twice – once before and once after the lesson observation, and interviewing their students in focus groups.

Results: This study reveals that participating teachers held a range of perspectives on scientific literacy, including some naïve perspectives. In addition, their perspectives were often not seen to be realised in the classroom as for teachers the emphasis of learning science was more traditional in nature. Many of their teaching practices promoted a culture of academic science that resulted in students’ difficulty in finding connections between the science they study in school and their everyday lives. This research also identified the tension which teachers encountered between their religious values and science values while they were teaching science in a culture with a religious tradition.

Conclusions: The professional development practice for science teachers in Bangladesh with its emphasis on developing science content knowledge may limit the scope for promoting the concepts of scientific literacy. Opportunities for developing pedagogic knowledge is also limited and consequently impacts on teachers’ ability to develop the concepts of scientific literacy and learn how to teach for its promotion.  相似文献   

11.
12.
This study, conducted in an inner-city middle school, followed the conceptual changes shown in 25 students' writing over a 12-week science unit. Conceptual changes for 6 target students are reported. Student understanding was assessed regarding the nature of matter and physical change by paper-and-pencil pretest and posttest. The 6 target students were interviewed about the goal concepts before and after instruction. Students' writing during lesson activities provided qualitative data about their understandings of the goal concepts across the science unit. The researcher constructed concept maps from students' written statements and compared the maps across time to assess changes in the schema of core concepts, complexity, and organization as a result of instruction. Target students' changes were studied in detail to determine patterns of conceptual change. After patterns were located in target students' maps, the remaining 19 students' maps were analyzed for similar patterns. The ideas that students identified in their writing showed changes in central concepts, complexity, and organization as the lessons progressed. When instructional events were analyzed in relation to students' demonstrated ideas, understanding of the goal conceptions appeared in students' writing more often when students had opportunities to explain their new ideas orally and in writing.  相似文献   

13.
Conceptual surveys have become increasingly popular at many levels to probe various aspects of science education research such as measuring student understanding of basic concepts and assessing the effectiveness of pedagogical material. The aim of this study was to construct a valid and reliable multiple‐choice conceptual survey to investigate students’ understanding of introductory quantum physics concepts. We examined course syllabi to establish content coverage, consulted with experts to extract fundamental content areas, and trialled open‐ended questions to determine how the selected content areas align with students’ difficulties. The questions were generated and trialled with different groups of students. Each version of the survey was critiqued by a group of discipline and teaching experts to establish its validity. The survey was administered to 312 students at the University of Sydney. Using the data from this sample, we performed five statistical tests (item difficulty index, item discrimination index, item point biserial coefficient, KR‐21 reliability test, and Ferguson’s delta) to evaluate the test’s reliability and discriminatory power. The result indicates that our survey is a reliable test. This study also provided data from which preliminary findings were drawn on students’ understandings of introductory quantum physics concepts. The main point is that questions which require an understanding of the standard interpretations of quantum physics are more challenging for students than those grouped as non‐interpretative. The division of conceptual questions into interpretive and non‐interpretive needs further exploration.  相似文献   

14.
This study aimed to assess the influence of a philosophy of science (POS) course on science teachers’ views of nature of science (NOS), perceptions of teaching about NOS, and instructional planning related to NOS. Participants were 56 undergraduate and graduate preservice secondary science teachers enrolled in a two science‐methods course sequence, in which participants received explicit, reflective NOS instruction. Ten of these participants were also enrolled in a graduate survey POS course. The Views of Nature of Science Questionnaire — Form C coupled with individual interviews was used to assess participants’ NOS views at the beginning and conclusion of the study. Participants’ lesson plans and NOS‐specific reflection papers were analysed to assess the impact of the POS course on their instructional planning related to, and perceptions of teaching about, NOS. Results indicated that, compared with participants enrolled in the methods courses, the POS course participants developed deeper, more coherent understandings of NOS. Substantially more of these latter participants planned explicit instructional sequences to teach about NOS. Additionally, the POS course participants’ discourse regarding NOS progressed from a preoccupation with the technical, to a concern with the practical, and, finally, to a focus on the emancipatory. Their views of teaching about NOS in their future classrooms went beyond the customary discourse of whether pre‐college students should or could be taught about NOS, to contemplating changes they needed to bring about in their own teaching behaviour and language to achieve consistency with their newly acquired NOS understandings.  相似文献   

15.
ABSTRACT

The study provides an insight into how teachers may facilitate students’ group learning in science with digital technology, which was examined when Norwegian lower secondary school students engaged in learning concepts of mitosis and meiosis. Quantitative and qualitative analyses of the teacher’s assistance draw on Galperin’s conceptualisation of learning.

Findings reveal patterns in the teacher’s guidance: the teacher fulfilled the orienting, executive and controlling functions while assisting students in identifying the key features of mitosis and meiosis and solving the compare and contrast task. The teacher relied on and interplayed with the available mediational resources: compare and contrast task, digital animations, and collaborating peers. However, it was the compare and contrast task that demonstrated an approach to study scientific concepts which may have contributed to the development of learners’ understanding about to engage in learning in science. By adopting such an approach, learning activity has the potential to not only help students to achieve learning outcomes but it acquires a functional significance, becoming a tool in the learning process aimed at the development of students’ as learners. The digital animations, in turn, demonstrated scientific processes that were otherwise invisible for students and triggered group discussions. The study, therefore, raises questions about the need for practitioners’ awareness of the type of support the technology and other resources provide to assist both conceptual learning and enhancing students’ agency in learning to learn.  相似文献   

16.
Song  Jinwoong  Chun  Jieun  Na  Jiyeon 《Science & Education》2021,30(6):1387-1419

In modern society, people are expected to make scientific decisions and rational actions over a range of personal and social problems. There have been a number of studies on students’ and adults’ decision-making over socio-scientific issues under the name of scientific literacy. In this study, we investigated the social and cultural backgrounds of Korean people’s actions and trust over their personal problems (e.g. health, career choice), by conducting in-depth interviews with ten Korean adults on their experience related to acupuncture and Four Pillars of Destiny (FPD), two representative examples of unorthodox sciences. The analysis of the data reveals that their actions concerning acupuncture and FPD are influenced by socio-cultural factors (esp. family culture, social system) and by their understandings of the nature of science. In addition, we found that there are a different set of reasons and varying degrees of people’s trust between acupuncture and FPD. Based on the results, we discussed the needs to introduce wider concepts of the nature of science and of the scopes of science education.

  相似文献   

17.
This study investigates how the enactment of a climate change curriculum supports students’ development of critical science agency, which includes students developing deep understandings of science concepts and the ability to take action at the individual and community levels. We examined the impact of a four to six week urban ecology curriculum on students from three different urban high schools in the USA. Data collection included pre and posttest written assessments from all students (n = 75) and pre and post interviews from focal students (n = 22) to examine how students’ conceptual understandings, beliefs and environmental actions changed. Our analyses showed that at the beginning of the curriculum, the majority of students believed that climate change was occurring; yet, they had limited conceptual understandings about climate change and were engaged in limited environmental actions. By the end of the curriculum, students had a significant increase in their understanding of climate change and the majority of students reported they were now engaged in actions to limit their personal impact on climate change. These findings suggest that believing a scientific theory (e.g. climate change) is not sufficient for critical science agency; rather, conceptual understandings and understandings of personal actions impact students’ choices. We recommend that future climate change curriculum focus on supporting students’ development of critical science agency by addressing common student misconceptions and by focusing on how students’ actions can have significant impacts on the environment.  相似文献   

18.
19.
This study investigated Indonesian and Japanese senior high-school students’ understanding of electrochemistry concepts.

Sample

The questionnaire was administered to 244 Indonesian and 189 Japanese public senior high-school students.

Design and methods

An 18-item multiple-choice questionnaire relating to five conceptual categories (reactions occurring during electrolysis, differences between electrolytic and voltaic cells, movement of ions in voltaic cells, poles in voltaic cells, voltaic cell reactions) was administered.

Results

The findings of this study show that difficulties and alternative conceptions previously reported in the literature are held equally by students from a developing and developed country, Indonesian and Japan respectively.

Conclusions

Collectively, the findings suggest that students’ understanding of electrochemistry concepts is relatively weak. Students from both samples shared common difficulties and displayed several alternative conceptions dealing with electrolysis, electricity flow, the voltaic cell and the electrode reactions. Not surprisingly, the students displayed limited consistency in understanding of the concepts in the five categories. This study has implications for teaching and learning, particularly in classroom discussions using models and computer animations in order to reinforce understanding at the sub-microscopic level.  相似文献   

20.
Numerous studies have shown that students often hold conceptions that conflict with accepted scientific ideas, both prior to and after instruction. The failure of instruction to affect students' conceptions can be interpreted as a failure to facilitate conceptual change. In this paper, an instructional strategy will be described that facilitates conceptual change in the special case where conceptual difficulties appear to arise because students confuse related physics concepts. The strategy involves two parts. Firstly, students observe an experiment or demonstration that conflicts with what they expect to see. Secondly, the instructor identifies students' intuitions that are correct but that they have associated with an incorrect physics term, and substitutes the correct physics term. Students can thus develop more scientifically acceptable understandings of physics concepts without having to give up their intuitive ideas. The use of this strategy will be illustrated in two domains of physics. Specializations: physics education, conceptual development, instructional design, improvement of tertiary science education.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号