首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

2.
妙在换元     
换元法是数学中重要的解题方法,对于一些较繁难的数学问题,用常规解法,或是无从下手,或是解题过程异常繁杂。这时,若能根据问题的特点,进行巧妙的换元,往往可以化繁为简,化难为易,收到事半功倍的功效。例题1 :分解因式(x y) (x y- 2 xy) (xy 1 ) (xy-1 )分析:式中x y,xy反复出现,按常规解法,则很繁且分解较难,若用两个新字母分别代替,则可达到化繁为简的目的,妙不可言。解:设x y=a,xy=b,则原式=a(a- 2 b) (b 1 ) (b- 1 )=a2 - 2 ab b2 - 1=(a- b) 2 - 1 2 =(a- b 1 ) (a- b- 1 )把a=x y,b=xy代回原式得原式=(x y- xy 1 ) (x y- xy- 1 )=(…  相似文献   

3.
一、选择题1.若xmyn÷(41x3y)=4x2,则().A.m=6,n=1B.m=5,n=1C.m=6,n=0D.m=5,n=02.下列计算中正确的是().A.(-y)7÷(-y)4=y2B.(x y)5÷(x y)=x4 y4C.(a-1)6÷(a-1)2=(a-1)3D.-x5÷(-x3)=x23.计算-3a2b5c÷(12ab2)的结果是().A.-23ab3c B.-6ab3cC.-ab3D.-6ab34.若(a b)÷b=0.6,则a÷b的值等于().A.-0.6B.-1.6C.-0.4D.0.45.下列计算正确的是().A.x3÷x2=x6B.(3xy2)2=6x2y4C.y4÷y4=1D.y4 y4=2y86.有下列各式:(1)(6ab 5a)÷a=6b 5;(2)(8x2y-4xy2)÷(-4xy)=-2x y;(3)(15x2y-10xy2)÷(5xy)=3x-2y;(4)(3x2y-3xy2 x)÷x=□北京浩然3xy-3y2.…  相似文献   

4.
已知x2-2kx+1是完全平方式,求K2003=____.解析:题设式第一项、第三项相当于完全平方公式中的a与b,而-2kx相当于完全平方公式中的±2ab,又因为完全平方公式有两个:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2,因此k的值就有可能有两个,由于x2-2kx+1=(x±1)2=x2±2x+1,故-2kx=±2x,因此k=±1,所以k2003=(±1)2003=±1.  相似文献   

5.
一、完全平方公式的变形变形一:a2+b2=(a+b)2-2ab.变形二:(a+b)2-(a-b)2=4ab.变形三:|a-b|=√(a+b)2-4ab.例1在实数范围内因式分解a4+1.解:由变形一,得a4+1=(a2)2+1=(a2+1)2-2·a2·1=(a2+2~(1/2)a+1)(a2-2~(1/2)a+1)例2 已知x2-5x+1=0,求x2+1/x2的值.  相似文献   

6.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

7.
一、利用对称式求解例 1 .已知 :a=15- 2 ,b=15 2 ,求a2 b2 7的值。解 :由题设可得 a b=2 5,ab=1。∴原式 =( a b) 2 - 2 ab 7=( 2 5) 2 - 2 7=2 5=5。二、定义法求解例 2 .已知 y=x- 8 8- x 1 8,求代数式 x yx - y- 2 xyx y - y x的值。解 :依据二次根式的定义 ,知 x- 8≥ 0 ,且 8- x≥ 0 ,∴ x=8,从而 y=1 8。∴原式 =x yx - y- 2 ( xy) 2xy( x - y )=( x - y ) 2x - y =x - y=8- 1 8=- 2 。三、用非负数性质求解例 3.如果 a b | c- 1 - 1 | =4a- 2 2 b 1 - 4,那么 a 2 b- 3c=。解 :将原条件式配方 ,得 ( a- 2 - 2 ) …  相似文献   

8.
题目 设x≥1,y≥1,证明:x+y+1/xy≤1/x+1/y+xy. 这是2011年高考安徽卷理科第19题,本文给出该不等式的两种证法并对不等式进行推广,与大家交流分享. 证法1:右边减去左边得1/x+1/y+xy-x-y-1/xy=y+x+x2y2-x2y-xy2-1/xy,将分子以x为主元整理得y(y-1)x2+(1-y2)x+y-1,即(y-1)(x-1)(xy-1),因为x≥1,y≥1,所以(y-1)(x-1)(xy-1)≥0,故1/x+1/y+xy-x-y-1/xy≥0,即x+y+1/xy≤1/x+1/y+xy,当且仅当x=1或y=1时等号成立.  相似文献   

9.
联想是以观察为基础,对研究的对象或问题,联想已有的知识和经验进行形象思维的方法.通过联想,构造相应的条件,从而解决问题.【例】 设x、y∈R+,且x+y=1,求证:(x+2)2+(y+2)2≥252.联想一:巧用“a2+b2≥2ab”法1:直接法由x+y=1,得(x+2)2+(y+2)2=x2+y2+4x+4y+8=(x+y)2+4(x+y)+8-2xy=13-2xy又∵x、y∈R+,由均值不等式,∴x+y≥2xy,即xy≤14,则-2xy≥-12.故(x+2)2+(y+2)2=13-2xy≥13-12=252.证毕.法2:间接法令a=x+2,b=y+2,则a+b=(x+2)+(y+2)=x+y+4=5(定值)∵a2+b2≥2ab,两边同时加上a2+b2得a2+b2≥(a+b)22即(x+2)2+(y+2)2≥[(x+2)+(y+2)]22=252.…  相似文献   

10.
<正>初中代数中有一个常用的恒等式:4ab=(a+b)2-(a-b)2-(a-b)2,它由两个完全平方公式相减而成.而今在高中向量中有一个类似的恒等式:4ab=(a+b)2,它由两个完全平方公式相减而成.而今在高中向量中有一个类似的恒等式:4ab=(a+b)2-(a-b)2-(a-b)2或ab=((a+b)/2)2或ab=((a+b)/2)2-((a-b)/2)2-((a-b)/2)2,称之为极化恒等式.它有如下几何意义:如图1,△ABC中,取BC的  相似文献   

11.
一、合并同类项例1合并下列多项式中的同类项:(1)8x2y-4xy2-2xy+3xy2-8x2y+5xy;(2)a2b2+2ab-7a2b2-52ab-1+5a2b2.解析:首先要找出同类项,然后再按照法则进行合并.  相似文献   

12.
给出条件的代数式求值问题是中考中的常见题型.解决这种问题的方法多姿多彩,“整体方法”是其中一道亮丽的风景.例1若xy=a,1x2+1y2=b(b>0),则(x+y)2的值为().A.b(ab-2)B.b(ab+2)C.a(ab-2)D.a(ab+2)分析先将条件式变形,再整体代入求值式求值.解b=1x2+1y2=x2+y2x2y2=(x+y)2-2xyx2y2=(x+y)2-2aa2,故(x+y)2=a2b+2a=a(ab+2).选D.例2已知a+b=-8,ab=6化简bba姨+aab姨=________.分析先将求值式变形,再把条件式整体代入求值,在变形过程要注意a<0,b<0.解原式=-baab姨-abab姨=-ab姨a2+b2ab=-ab姨(a+b)2-2abab=-6姨64-126=-2636姨.填-2636姨.例3已知x=…  相似文献   

13.
1.构造等式例 1.已知 x+ y+ z=3,求3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3 的值。解 :根据所求代数式的结构特征 ,可构造恒等式 :a3 + b3 + c3 - 3abc=(a+ b+ c) (a2 + b2 + c2 -ab- bc- ac)。设 a=x- 1,b=y- 1,c=z-1,有 a+ b+ c=x+ y+ z- 3=0。将上面三式代入恒等式得 :(x- 1) 3 + (y- 1) 3 + (z- 1) 3- 3(x- 1) (y- 1) (z- 1) =0 ,∴ 3(x- 1) (y- 1) (z- 1)(x- 1) 3 + (y- 1) 3 + (z- 1) 3=1。2 .构造不等式例 2 .实数 a、b、c、d满足 a+b+ c+ d=5 ,a2 + b2 + c2 + d2 =7,求 a的范围。解 :根据第一个等式的平方与第二个等…  相似文献   

14.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

15.
A卷为第Ⅰ卷和第Ⅱ卷,满分100分,B卷满分50分 A卷(共100分) 第I卷(选择题,共60分)一、选择题:(每小题4分,共60分)1.|-1/5|的倒数是( ).(A)-5(B)5(C)1/5(D)-1/52.下列运算中,不正确的是( ).(A)3xy-(x2-2xy)=5xy-x2(B)2ab2·4ab2=9a2b4(C)5x(2x2-y)=10x3-5xy(D)(X+3)(x2-3x+9)=x2+93.在平杯四边形、矩形、菱形、等腰三角形中,既是中心对称图  相似文献   

16.
代数式的变形是中学数学中一类常用的解题技巧,其方法灵活多变,我们在化简、求值、证明恒等式(不等式)和解方程(不等式)的过程中,常需将代数式变形,现结合实例,对代数式变形中一些常用方法和技巧作一介绍。一、变化已知条件或所求式例1 若1/x-1/y=3,则2x+3xy-2y/x-2y-y=___。解:由若1/x-1/y=3可知x-y=3xy,所以 2x+3xy-2y/x-2y-y =2(x-y)+3xy/(x-y)-2xy =2(-3xy)+3xy/-3xy-2xy=3/5。例2 如果a是x~2-3x+1=0的根,试  相似文献   

17.
数学竞赛中常常会遇到含有多层根号的根式 .一般的说 ,这类根式都能通过化简最终化为单一根号的根式或不带根号的式子 .一、多层二次根式的化简化简含有多层二次根号的根式 ,一般有两种思路 :(一 )对根号下的式子进行配方 ,变为完全开方式如果是 a± 2 b的形式 ,设法找到两个有理数 x、y,使 x + y =a,xy =b,则a± 2 b =( x + y)± 2 xy =( x ) 2± 2 xy + ( y ) 2 =( x± y ) 2 =| x± y | ( x >y >0 )如果是 a± b的形式 ,可如下变形a± b =2 a± 2 b2= 2 a± 2 b2再用上述方法化简 .比如 ,化简 ( 1) 3+ 2 2 ;( 2 ) 2 - 3.解 :( 1)原式 =( …  相似文献   

18.
一、连续使用例1 已知a/x+b/y=1,求x+y的最小值。(x、y、a、b均正数) 错解∵1=a/x+b/y≥2((ab/xy)~(1/2)) ∴(xy)~(1/2)≥2((ab)~(1/2)) ∴(x+y)≥2((xy)~(1/2))≥4((ab)~(1/2)) ∴x+y的最小值为4((ab)~(1/2)) 批注第一个“≥”中等号成立的条件为x=y,第二个“≥”中等号成立的条件为a/x=b/y,两者只有在a=b时才是相容的,而原题未给出这个条件。正确的解法为:  相似文献   

19.
文 [1]的定理 1,2分别为 :定理 1 设 a≠ - 1,b≠ - 1,则 11+ a+11+ b=1成立的充要条件是 ab=1.定理 2 设 a≠ - 1,b≠ - 1,则 a1+ a+b1+ b=1成立的充要条件是 ab=1.我们可将定理 1,2推广为 :定理 3 设 xy≠ 0 ,则 ax+ by=1成立的充要条件是 (x- a) (y- b) =ab(证明略 ) .把定理 3中的 a,b,x,y分别换成 1,1,1+ 1+ b,则得定理 1;把定理 3中的 x,y分别换成 1+ a,1+ b,则得定理 2 .用定理 3解某些最值题或证明某些不等式是比较方便的 ,下面举例说明 .1 求最值例 1 已知 x,y∈ (0 ,+∞ )且 2 x+ y=4,求 1x+ 1y的最小值 .(文 [2 ]例 2 )解 …  相似文献   

20.
乘乘法公式是由形式特殊的多项式相乘总结出来的规律,共有两种:1.平方差公式(a+b)(a-b)=a2-b2.2.完全平方公式(1)完全平方(和)公式(a+b)2=a2+2ab+b2.(2)完全平方(差)公式(a-b)2=a2-2ab+b2.利用乘法公式进行计算可大大提高运算速度,它的应用非常广泛.下面举例说明乘法公式的巧妙运用.一、巧换位置例1计算(-3t+4)2.解:原式=(4-3t)2=16-24t+9t2.二、巧变符号例2计算(-2a-3)2.解:原式=[-(2a+3)]2=(2a+3)2=4a2+12a+9.三、巧变系数例3计算(2x+6y)(4x+12y).解:原式=2(x+3y).4(x+3y)=8(x+3y)2=8(x2+6xy+9y2)=8x2+48xy+72y2.四、巧变指数例4计算(a+1)…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号