首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was conducted to investigate the degree of effectiveness of cooperative learning instruction over a traditional approach on 11th grade students' understanding of electrochemistry. The study involved forty-one 11th grade students from two science classes with the same teacher. To determine students' misconceptions concerning electrochemistry, the Electrochemistry Concept Test consisting of 8 open-ended and 12 multiple-choice questions was used as a pre-test and some students were interviewed. According to the results, twenty-four misconceptions (six of them initially identified) about electrochemistry were identified. The classrooms were randomly assigned to a control group (traditional instruction, 21 students) and an experimental group (cooperative learning based on a constructivist approach, 20 students). After instruction, the same test was administered to both groups as a post-test. The results from the t-test indicated that the students who were trained using cooperative learning instruction had significantly higher scores in terms of achievement than those taught by the traditional approach. According to the post-test and interviews, it was also found that instruction for the cooperative group was more successful in remediation of the predetermined misconceptions.  相似文献   

2.
The authors mainly aimed to investigate the following question: Are there any significant effects of the first combined method of a conceptual change approach with refutation text, worksheets, and activities with respect to the second combined method of a conceptual change approach with conceptual texts, presentations, and activities on students' misconceptions and achievement on a 3-tier posttest score measuring Grade 7 basic astronomy concepts when independent variables are controlled? There was a statistically significant effect of the first combined method with respect to the second method at the medium effect size on both misconception scores and achievement scores. This finding clearly demonstrates that use of the first combined method, which included refutation texts with worksheets, eliminated the students' misconceptions and increased their achievement. The second combined method also increased the students' achievement, but almost 40% of their misconceptions remained.  相似文献   

3.
The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade students from two intact classes of a Chemistry Course instructed by the same teacher. One of the classes was randomly assigned as the experimental group, which was instructed with cooperative learning approach based on conceptual change conditions and the other class was assigned as the control group, which was instructed with traditional instruction. Chemical Equilibrium Concept Test (CECT) was administered to the experimental and the control groups as pre- and post-tests to measure the students' conceptual understanding, and Chemical Equilibrium Achievement Test (CEAT) was administered to the experimental and the control groups as a post-test to measure the students' achievements related to computational problems. Science Process Skills Test was used at the beginning of the study to determine the students' science process skills. Multivariate Analysis of Covariate (MANCOVA) was used to analyze the data. The results showed that students in the experimental group had better conceptual understanding, and achievement of computational problems related to the chemical equilibrium concepts. Furthermore, students' science process skills were accounted for a significant portion of variations in conceptual understanding and achievements related to the computational problems.  相似文献   

4.
The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students’ understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high school participated in the study. The classes were randomly assigned as the experimental and control group. The control group (N?=?35) was taught by traditional instruction while the experimental group (N?=?37) was taught cooperative learning based on conceptual change approach instruction. Chemical Bonding Concept Test (CBCT) was used as pre- and post-test to define students’ understanding of chemical bonding concepts. After treatment, students’ interviews were conducted to observe more information about their responses. Moreover, students from experimental groups were interviewed to obtain information about students’ perceptions on cooperative work experiences. The results from ANCOVA showed that cooperative learning based on conceptual change approach instruction led to better acquisition of scientific conceptions related to chemical bonding concepts than traditional instruction. Interview results demonstrated that the students in the experimental group had better understanding and fewer misconceptions in chemical bonding concepts than those in the control group. Moreover, interviews about treatment indicated that this treatment helped students’ learning and increased their learning motivation and their social skills.  相似文献   

5.
This study examined how constructivist and didactic instruction was related to students' cognitive, motivational, and achievement outcomes in English classrooms, using a sample of 3000 Grade 9 students from 108 classrooms in 39 secondary schools in Singapore. Results of hierarchical linear modeling showed differential cross-level relations. After controlling for students' prior achievement, constructivist instruction was a significant positive predictor of students' deep processing strategies, self-efficacy, task value, and English achievement, whereas didactic instruction was a significant positive predictor of students' surface processing strategies and a negative predictor of English achievement. Our findings underscore the importance of linking instructional practices with multiple outcomes, including psychological factors that are important for student learning.  相似文献   

6.
The aim of this study was to investigate the effectiveness of conceptual change-based instruction and traditionally designed physics instruction on students' understanding of projectile motion concepts. Misconceptions related to projectile motion concepts were determined by related literature on this subject. Accordingly, the Projectile Motion Concepts Test was developed. The data were obtained through 43 students in an experimental group taught with learning activities based on conceptual change instruction and 39 students in a control group who followed traditional classroom instruction. The results showed that conceptual change-based instruction caused significantly better acquisition of conceptual change of projectile motion concepts than the traditional instruction.  相似文献   

7.
Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult, with teaching commonly leading to students developing misconceptions. Many of these misconceptions result from over‐simplified models used in text books, by the use of traditional pedagogy that presents a rather limited and sometimes incorrect picture of the issues related to chemical bonding and by assessments of students' achievement that influence the way the topic is taught. In addition, there are discrepancies between scientists regarding key definitions in the topic and the most appropriate models to teach it. In particular, teaching models that are intended to have transitional epistemological value in introducing abstract ideas are often instead understood by students as accounts of ontological reality. In this review paper we provide science educators, curricula developers and pre‐service and in‐service professional development providers an up‐to‐date picture regarding research and developments in teaching about chemical bonding. We review the external and internal variables that might lead to misconceptions and the problematic issue of using limited teaching/learning models. Finally, we review the approaches to teaching the concept that might overcome some of these misconceptions.  相似文献   

8.
The purpose of this study was to compare the effects of a conceptual change approach over traditional instruction on tenth‐grade students’ conceptual achievement in understanding chemical equilibrium. The study was conducted in two classes of the same teacher with participation of a total of 44 tenth‐grade students. In this study, a pre‐test/post‐test control group semi‐experimental design pattern was used. During teaching the topic of chemical equilibrium concepts in the chemistry curriculum, a conceptual change approach was applied in the experimental group whereas traditional instruction was followed in the control group. Data were analysed with an independent samples t‐test, and an analysis of covariance using the pre‐test scores as the covariate. The results showed that the conceptual change approach was statistically more effective than traditional instruction in terms of students’ conceptual understanding. After the six‐week intervention, interviews were conducted with 18 selected students in the study. In the interviews a prevailing alternative conception was detected beside many alternative conceptions. When they were asked to compare equilibrium constants of two different reactions they mostly responded to mean that ‘the bigger the mol number of the products, the bigger the equilibrium constant’ without considering what proportions the reactants were transformed into products in a reaction. Also, in this study a two‐tier multiple choice test was developed related to chemical equilibrium to detect students’ concepts and alternative concepts.  相似文献   

9.
The purpose of this study was to investigate the effects of the Common Knowledge Construction Model (CKCM) lesson sequence, an intervention based both in conceptual change theory and in Phenomenography, a subset of conceptual change theory. A mixed approach was used to investigate whether this model had a significant effect on 7th grade students' science achievement and conceptual change. The Excretion Unit Achievement Test (EUAT) indicated that students (N = 33) in the experimental group achieved significantly higher scores (p < 0.001) than students in the control group (N = 35) taught by traditional teaching methods. Qualitative analysis of students' pre‐ and post‐teaching conceptions of excretion revealed (1) the addition and deletion of ideas from pre‐ to post‐teaching; (2) the change in the number of students within categories of ideas; (3) the replacement of everyday language with scientific labels; and (4) the difference in the complexity of students' responses from pre‐ to post‐teaching. These findings contribute to the literature on teaching that incorporates students' conceptions and conceptual change. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47: 25–46, 2010  相似文献   

10.
Case analysis is often used in early childhood teacher education as a constructivist method for developing students' professional skills and knowledge. Although case-based instruction is popular, the professional literature contains little empirical evidence that it effectively helps students develop professional knowledge. Indeed, some empirical evidence suggests case-based instruction may negatively impact learning, especially for students with limited existing knowledge about children's development. This study compared the child development content knowledge gains of two classes of undergraduate preservice early childhood teachers: those taught child development with case-based instruction and those taught the same content with traditional didactic instruction. The study also sought to determine if students' level of prior knowledge interacted with the type of instruction they received. Results indicated that students with strong prior knowledge out-performed classmates regardless of instructional method (i.e., case-based or didactic instruction). Students at all levels of prior knowledge had similar knowledge gains across both case-based and didactic instruction, but data trends suggest students with the least prior knowledge gained the most knowledge with case-based instruction.  相似文献   

11.
Our main goal in this study was to explore whether the use of models in molecular genetics instruction in high school can contribute to students' understanding of concepts and processes in genetics. Three comparable groups of 11th and 12th graders participated: The control group (116 students) was taught in the traditional lecture format, while the others received instructions which integrated a bead model (71 students), or an illustration model (71 students). Similar instructions and the same guiding questions accompanied the two models. We used three instruments: a multiple‐choice and an open‐ended written questionnaire, as well as personal interviews. Five of the multiple‐choice questions were also given to students before receiving their genetics instruction (pretest). We found that students who used one of the two types of models improved their knowledge in molecular genetics compared to the control group. However, the open‐ended questions revealed that bead model activity was significantly more effective than illustration activity. On the basis of these findings we conclude that, though it is advisable to use a three‐dimensional model, such as the bead model, engaging students in activities with illustrations can still improve their achievement in comparison to traditional instruction. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 500–529, 2006  相似文献   

12.
The research reported in this study was designed to answer three questions: (a) What misconceptions do eighth grade students have concerning the chemistry concepts from their textbooks. (b) How is reasoning ability related to misconceptions concerning chemistry concepts. (c) How effective are textbooks in teaching an understanding of chemistry concepts? Five chemistry concepts were used in the study: chemical change, dissolution, conservation of atoms, periodicity, and phase change. Problems concerning the five concepts were given to 247 eighth-grade students in order to assess the students' degree of understanding of chemistry concepts and to identify specific misconceptions. Two pencil-and-paper Piaget-type tasks were used to assess intellectual level. A comparison of intellectual level and scores on the chemistry concepts showed moderate correlations. However, the small number of formal operational students in the sample makes these results inconclusive. A study of the level of understanding of the five chemistry concepts and the nature of the misconceptions held by students indicate a general failure of textbooks to teach a reasonable understanding of chemistry concepts.  相似文献   

13.
This study investigated the development in students' nature of science (NOS) views in the context of an explicit inquiry‐oriented instructional approach. Participants were 18 seventh‐grade students who were taught by a teacher with “appropriate” knowledge about NOS. The intervention spanned about 3 months. During this time, students were engaged in three inquiry‐oriented activities that were followed by reflective discussions of NOS. The study emphasized the tentative, empirical, inferential, and creative aspects of NOS. An open‐ended questionnaire, in conjunction with semi‐structured interviews, was used to assess students' views before, during, and after the intervention. Before instruction, the majority of students held naïve views of the four NOS aspects. During instruction, the students acquired more informed and “intermediary” views of the NOS aspects. By the end of the intervention, the students' views of the NOS aspects had developed further still into informed and “intermediary.” These findings suggest a developmental model in which students' views develop along a continuum during which they pass through intermediary views to reach more informed views. Implications for teaching and learning of NOS are discussed. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 470–496, 2008  相似文献   

14.
In a technologically driven society, math and science students in the United States are falling further and further behind their international counterparts, resulting in an influx of STEM focused, reformed K-12 schools, including schools focused on project-based learning (PBL). This article reports a study of the effectiveness of PBL on high school students' performance on state mandated standardized mathematics and science achievement measures. Manor New Tech High School is a nationally recognized model STEM school, with a diverse student population, where all instruction is delivered through PBL. Although there is ample research suggesting that PBL is advantageous for increasing STEM learning compared to conventional teaching approaches, there is a lack of studies randomly assigning students to receive PBL. Further, some of the effects observed for students attending project-based schools could be due to a self-selection bias for students or parents that choose such an alternative learning environment. This study addresses both of these concerns and found that students taught through PBL, as a group, matched performance of conventionally taught students on all science 11th grade and mathematics 9th, 10th, and 11th grade TAKS achievement measures and exceeded performance by a scale score increase of 133 for the 10th grade science TAKS measure by (B = 133.082, t = 3.102, p < .05). One possible explanation of the differences observed in this study could be the TAKS instrument used to capture student math and science achievement that interprets “real-life applications” of content differently between math and science questions. These results align with literature on the effects of PBL and deepen our understanding of these effects by providing a controlled study with random assignments to the PBL experience. Future research looking at the effect of PBL on achievement on the PISA could be beneficial in identifying benefits of PBL implementation in schools.  相似文献   

15.
The present study ascertains the relationship between socioeconomic status (SES) and students' science self-efficacy using data involving 509,182 15-year-old students and 17,678 school principals in 69 countries/regions who participated in the Programme for International Student Assessment (PISA) 2015. Hierarchical linear modelling results show that, after controlling for science teachers' instructional practices (science class disciplinary climate, inquiry-based instruction, teachers' support, direct instruction, provision of feedback, instructional adaptation), school science resources and various student variables (gender, grade levels, type of school programme), SES was related to students' science self-efficacy in the majority of countries/regions (62–68 countries/regions, depending on the SES indicators used). Specifically, SES was related to students' science self-efficacy in a larger number of countries/regions when it was measured using home cultural resources, home educational resources or a composite indicator (economic, social and cultural status) than when it was measured using parental education levels or occupational status. In contrast, students' science self-efficacy was unrelated to the science teachers' instructional practices examined (except inquiry-based instruction) in most of the countries/regions. These results expand our understanding of students' science self-efficacy, as a type of learning motivation, from being a largely psychological attribute to one that is also influenced by social origins such as family SES. They imply that SES may have a larger influence on student achievement than we may have assumed if we include the indirect influence of SES on student achievement via students' self-efficacy.  相似文献   

16.
Bearing in mind students' misconceptions about basic concepts in astronomy, the present study conducted a series of constructivist activities aimed at changing future elementary and junior high school teachers' conceptions about the cause of seasonal changes, and several characteristics of the Sun–Earth–Moon relative movements like Moon phases, Sun and Moon eclipses, and others. The activities and results concerning the cause of seasonal changes are reported. Both the experimental class and the control groups improved their grasp of basic astronomy concepts statistically significantly, although the experimental class made the most impressive progress of all. Regarding subjects relevant to this study (seasonal changes), only the experimental class showed a statistically significant improvement, which justifies the constructivist approach. We conclude that in implementing a reform in the science curriculum, the change has to include the subjects taught and also the way they are taught. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 879–906, 2006  相似文献   

17.
This paper presents the findings from a randomized control trial study of reading/literacy-integrated science inquiry intervention after 1 year of implementation and the treatment effect on 5th-grade low-socio-economic African-American and Hispanic students’ achievement in science and English reading. A total of 94 treatment students and 194 comparison students from four randomized intermediate schools participated in the current project. The intervention consisted of ongoing professional development and specific instructional science lessons with inquiry-based learning, direct and explicit vocabulary instruction, and integration of reading and writing. Results suggested that (a) there was a significantly positive treatment effect as reflected in students' higher performance in district-wide curriculum-based tests of science and reading and standardized tests of science, reading, and English reading fluency; (b) males and females did not differ significantly from participating in science inquiry instruction; (c) African-American students had lower chance of sufficiently mastering the science concepts and achieving above the state standards when compared with Hispanic students across gender and condition, and (d) below-poverty African-American females are the most vulnerable group in science learning. Our study confirmed that even a modest amount of literacy integration in inquiry-based science instruction can promote students' science and reading achievement. Therefore, we call for more experimental research that focus on the quality of literacy-integrated science instruction from which middle grade students, particularly low-socio-economic status students, can benefit.  相似文献   

18.
Conceptual change is a gradual process that occurs as students integrate new information into their existing conceptions. Throughout this process, assessing learning requires measures to diagnose misconceptions and understand how knowledge is changing. We developed three measures of misconceptions to assess students' knowledge early in instruction on decimals that measured the: 1) prevalence of misconception errors based on response patterns, 2) existence of misconceptions in a more abstract context, and 3) strength of misconceptions using confidence ratings. Students ages 9–11 (N = 297) completed the assessment at three time points. These measures revealed that whole number and role of zero misconceptions decreased and fraction misconceptions increased over time. The current measures also differentiated between weaker misconceptions that were changed after brief instruction and strongly held misconceptions. The current measures can create a more complete picture of knowledge than only measuring students' accuracy, providing a window into the conceptual change process.  相似文献   

19.
The purpose of this study is to investigate the effectiveness of guided-inquiry approach in science classes over existing science and technology curriculum in developing content-based science achievement, science process skills, and attitude toward science of grade level 6 students in Turkey. Non-equivalent control group quasi-experimental design was used to investigate the treatment effect. There were 162 students in the experimental group and 142 students in the control group. Both the experimental and control group students took the Achievement Test in Reproduction, Development, and Growth in Living Things (RDGLT), Science Process Skills Test, and Attitudes Toward Science Questionnaire, as pre-test and post-test. Repeated analysis of variance design was used in analyzing the data. Both the experimental and control group students were taught in RDGLT units for 22 class hours. The results indicated the positive effect of guided-inquiry approach on the Turkish students' cognitive as well as affective characteristics. The guided inquiry enhanced the experimental group students' understandings of the science concepts as well as the inquiry skills more than the control group students. Similarly, the experimental group students improved their attitudes toward science more than the control group students as a result of treatment. The guided inquiry seems a transition between traditional teaching method and student-centred activities in the Turkish schools.  相似文献   

20.
Our research project was guided by the assumption that students who learn to understand phenomena in everyday terms prior to being taught scientific language will develop improved understanding of new concepts. We used web‐based software to teach students using a “content‐first” approach that allowed students to transition from everyday understanding of phenomena to the use of scientific language. This study involved 49 minority students who were randomly assigned into two groups for analysis: a treatment group (taught with everyday language prior to using scientific language) and a control group (taught with scientific language). Using a pre–post‐test control group design, we assessed students' conceptual and linguistic understanding of photosynthesis. The results of this study indicated that students taught with the “content‐first” approach developed significantly improved understanding when compared to students taught in traditional ways. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 529–553, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号