首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While some researchers have argued for science classrooms that embrace open-inquiry by engaging students in doing science as scientists do (cf. National Research Council [NRC] 1996; Driver et al. in Sci Educ 84:287–312, 2000; Windschitl et al. in Sci Educ 87(1):112–143, 2008), others have argued that open-inquiry is impractical, ineffective, and perhaps even counter-productive towards promoting normative scientific ideas (cf. Kirschner et al. in Educ Psychol 41(2):75–86, 2006; Settlage in J Sci Teach Educ 18:461–467, 2007). One of the challenges in informing the debate on this issue is the scarcity of well-documented courses that engage students in open-inquiry characteristic of scientific research. This paper describes the design, implementation, and outcomes of such a course for undergraduates planning on becoming elementary teachers. The goal of the class was to immerse future teachers in authentic, open-inquiry (without specific learning goals related to scientific concepts) in hopes that students would come away with a deeper understanding of the nature of science (NOS) and improved attitudes towards science. Data collected from a variety of sources indicate that an authentic, open-inquiry experience is feasible to implement in an undergraduate setting, gives students a more sophisticated NOS understanding, improves students’ attitudes towards science and open-inquiry, and changes the way they intend to teach science in their future classrooms.  相似文献   

2.
English learners are faced with the dual challenge of acquiring English while learning academic content through the medium of the new language (Lee et al. in J Res Sci Teach 45(6):726?C747, 2008; Stoddart et al. in J Res Sci Teach 39(8):664?C687, 2002) and therefore need specific accommodations to achieve in both English and the content areas. Teachers require higher quality and new forms of professional development to learn and meet the needs of their students. This study examines the impact of one professional development model that explicitly embedded language learning strategies into science inquiry lessons. It also demonstrates how teachers involved in the PD program improve their self-efficacy about language instruction embedded in content and how they interpret and implement the methodology.  相似文献   

3.
Societal benefit depends on the general public’s understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439–443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57–69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93–99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110–134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175–218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916–937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as “authentic” if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110–134, 2009; Chinn and Malhotra in Sci Educ 86(2):175–218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced their understanding of biotechnology? As respondents explored numerous ideas in order to develop a workable research question, struggled to create a viable protocol, executed their experiment, and then evaluated their results, they commented on unexpected topics regarding the nature of science as well as specific content knowledge relating to their experiments. Four out of five participants reported they learned the most during authentic inquiry laboratory experience.  相似文献   

4.
Despite an increased focus on science, technology, engineering, and mathematics (STEM) in U.S. schools, today’s students often struggle to maintain adequate performance in these fields compared with students in other countries (Cheek in Thinking constructively about science, technology, and society education. State University of New York, Albany, 1992; Enyedy and Goldberg 2004; Mandinach and Lewis 2006). In addition, despite considerable pressure to promote the placement of students into STEM career fields, U.S. placement is relatively low (Sadler et al. in Sci Educ 96(3):411–427, 2012; Subotnik et al. in Identifying and developing talent in science, technology, engineering, and mathematics (STEM): an agenda for research, policy and practice. International handbook, part XII, pp 1313–1326, 2009). One explanation for the decline of STEM career placement in the U.S. rests with low student affect concerning STEM concepts and related content, especially in terms of self-efficacy. Researchers define self-efficacy as the internal belief that a student can succeed in learning, and that understanding student success lies in students’ externalized actions or behaviors (Bandura in Psychol Rev 84(2):191–215, 1977). Evidence suggests that high self-efficacy in STEM can result in student selection of STEM in later educational endeavors, culminating in STEM career selection (Zeldin et al. in J Res Sci Teach 45(9):1036–1058, 2007). However, other factors such as proficiency play a role as well. The lack of appropriate measures of self-efficacy can greatly affect STEM career selection due to inadequate targeting of this affective trait and loss of opportunity for early intervention by educators. Lack of early intervention decreases selection of STEM courses and careers (Valla and Williams in J Women Minor Sci Eng 18(1), 2012; Lent et al. in J Couns Psychol 38(4), 1991). Therefore, this study developed a short-form measure of self-efficacy to help identify students in need of intervention.  相似文献   

5.
The need to reform science teacher preparation programs has been pointed out in research (Bryan and Abell in J Res Sci Teach 36:121–140, 1999; Bryan and Atwater in Sci Educ 8(6):821–839, 2002; Harrington and Hathaway in J Teach Educ 46(4):275–284, 1995). Science teachers are charged with the responsibility of incorporating both cognitive and non-cognitive parameters in their everyday teaching practices. This often results in their reluctance to teach science because they often lack disciplinary and/or pedagogical expertise required to promote science learning. The purpose of this study is to propose an alternative instructional approach in which Lego vehicles were used as a tool to promote pre-service elementary teachers’ development and to examine whether there are non-cognitive parameters that promote or obstruct them from using Lego Technologies as a teaching tool. The context of the study was defined by a teacher preparation program of a private university in a small Mediterranean country. A sample of 28 pre-service elementary teachers, working in five 5–6-member groups were involved in scientific inquiries, during which they had to use vehicles in order to solve scientific problems related to concepts such as gear functioning, force, and motion. The nature of their cognitive engagement in the scientific inquiry process, non-cognitive parameters contributing to their cognitive engagement, and the impact of their involvement in the process on their development were examined through qualitative analysis of pre- and post-inquiry interviews, presentations of their solutions to the scientific problems and of their personal reflective journals.  相似文献   

6.
Research exploring the possible link between quality of argumentation and content knowledge is not straightforward. Some studies suggest a positive relationship (e.g. Dawson & Schibeci in J Biol Educ 38(1):7–12, 2003) while others do not (e.g. Zohar & Nemet in J Res Sci Teach 39:35–62, 2002). This study examined the possible relationship between pre-service science teachers’ (PSTs) lines of argument regarding genetic cloning issues and their knowledge of the related content. In the research, pre-service teachers were divided into groups according to the results of a conceptual understanding test on genetic cloning, and were categorized as high, middle and low achievers. After introducing three socio-scientific scenarios (relating to genetic cloning) with the intention of prompting lines of argumentation, the PSTs then participated in semi-structured interviews with the research team. It was revealed that there is not a significant relationship between the quality of socio-scientific argumentation among PSTs and their knowledge of content in the domain of cloning. Explanations for these results are discussed in light of the related literature and with reference to the interviews.  相似文献   

7.
8.
Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in J Res Sci Teach 32(8):797–816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn academic English. Teachers must have a clear understanding of science vocabulary in order to communicate and evaluate these understandings with students. The present study measured preservice teachers’ vocabulary knowledge during a science methods course and documented their use of science vocabulary during peer teaching. The data indicate that the course positively impacted the preservice teachers’ knowledge of select elementary science vocabulary; however, use of science terms was inconsistent in microteaching lessons. Recommendations include providing multiple vocabulary instruction strategies in teacher preparation.  相似文献   

9.
In the first three sections of this paper we comment on some of the ideas developed in the forum papers, pointing out possible misunderstandings and constructing new explanations that clarify arguments we made in the original article. In the last section we expand the discussion raised in the original paper, elaborating on the limits of the use of Marxist approaches to sociocultural studies of science education. Following insights suggested by Loxley et al. (Cult Stud Sci Edu. doi:10.1007/s11422-013-9554-z, 2013) and detailed by Zuss (Cult Stud Sci Edu, 2014) on the commodification of knowledge, we sketch an analysis of how knowledge is transformed into capital to understand why contemporary scholars are likely to be engaged in a relation of production that resembles capitalist exploitation.  相似文献   

10.
This study explored the nature of the relationship between a fifth-grade teacher and an informal science educator as they planned and implemented a life science unit in the classroom, and sought to define this relationship in order to gain insight into the roles of each educator. In addition, student learning as a result of instruction was assessed. Prior research has predominately examined relationships and roles of groups of teachers and informal educators in the museum setting (Tal et al. in Sci Educ 89:920–935, 2005; Tal and Steiner in Can J Sci Math Technol Educ 6:25–46, 2006; Tran 2007). The current study utilized case study methodology to examine one relationship (between two educators) in more depth and in a different setting—an elementary classroom. The relationship was defined through a framework of cooperation, coordination, and collaboration (Buck 1998; Intriligator 1986, 1992) containing eight dimensions. Findings suggest a relationship of coordination, which requires moderate commitment, risk, negotiation, and involvement, and examined the roles that each educator played and how they negotiated these roles. Consistent with previous examinations in science education of educator roles, the informal educator’s role was to provide the students with expertise and resources not readily available to them. The roles played by the classroom teacher included classroom management, making connections to classroom activities and curricula, and clarifying concepts. Both educators’ perceptions suggested they were at ease with their roles and that they felt these roles were critical to the optimization of the short time frames (1 h) the informal educator was in the classroom. Pre and posttest tests demonstrated students learned as a result of the programs.  相似文献   

11.
Through a critical cultural assets model, the authors use the methodological practices of collaboration, community site visits, document analysis, and interviews with cultural insiders to explore schools’ continued rejection of academic belonging for people from “othered” communities. They explore the case of Samoan youth—a marginalized cultural group—to contest the shared belief that school-based citizenry is an educational impossibility. Interview data with Samoan elders is analyzed using Consensual Qualitative Research methods (Hill et al. in Couns Psychol 24(4):517–572, 1997). They present themes of cultural capacities and academic disconnection to imagine a school context for the integration of cultural assets for “othered” youth (Kliewer and Biklen in Teach Coll Rec 109(12):2579–2600, 2007; Kliewer et al. American Educ Res Assoc J 3(2):163–192, 2006).  相似文献   

12.
This paper reports on a teacher’s and his students’ responsiveness to a new tetrahedral-oriented (Mahaffy in J Chem Educ 83(1):49–55, 2006) curriculum requiring more discursive classroom practices in the teaching of chemistry. In this instrumental case study, we identify the intentions of this learner-centered curriculum and a teacher’s development in response to this curriculum. We also explore the tensions this teacher experiences as students subsequently respond to his adjusted teaching. We use a Chemistry Teacher Inventory (Lewthwaite and Wiebe in Res Sci Educ 40(11):667-689, 2011; Lewthwaite and Wiebe in Can J Math Sci Technol Educ 12(1):36–61, 2012; Lewthwaite in Chem Educ Res Pract. doi:10.1039/C3RP00122A, 2014) to assist the teacher in monitoring how he teaches and how he would like to improve his teaching. We also use a student form of the instrument, the Chemistry Classroom Inventory and Classroom Observation Protocol (Lewthwaite and Wiebe 2011) to verify the teacher’s teaching and perception of student preferences for his teaching especially in terms of the discursive processes the curriculum encourages. By so doing, the teacher is able to use both sets of data as a foundation for critical reflection and work towards resolution of the incongruence in data arising from students’ preferred learning orientations and his teaching aspirations. Implications of this study in regards to the authority of students’ voice in triggering teachers’ pedagogical change and the adjustments in ‘teachering’ and ‘studenting’ required by such curricula are considered.  相似文献   

13.
Communication is an important part of scientific practice and, arguably, may be seen as constitutive to scientific knowledge. Yet, often scientific communication gets cursory treatment in science studies as well as in science education. In Nature of Science (NOS), for example, communication is rarely mentioned explicitly, even though, as will be argued in this paper, scientific communication could be treated as a central component of NOS. Like other forms of communication, scientific communication is socially and symbolically differentiated. Among other things, it encompasses technical language and grammar, lab communications, and peer reviews, all of which will be treated in this paper in an attempt to engage on an empirical and theoretical level with science as communication. Seeing science as a form of communicative action supplements the epistemological view of science that is standard to both NOS and the philosophy of science. Additions to the seven NOS aspects on Lederman’s (Handbook of research on science education. Lawrence Erlbaum, Mahwah, pp. 831–879, 2007) list are put forward as well as preliminary thoughts on the inclusion of scientific communication into NOS instruction.  相似文献   

14.
Agnotology is a term that has been used to describe the study of ignorance and its cultural production (Proctor in Agnotology: the making and unmaking of ignorance. Stanford University Press, Stanford, 2008). For issues that are contentious in the societal realm, though largely not in the scientific realm, such as human evolution or the broad basics of human-induced climate change, it has been suggested that explicit study of relevant misinformation might be a useful teaching approach (Bedford in J Geogr 109(4):159–165, 2010). Recently, Legates et al. (Sci Educ. doi:10.1007/s11191-013-9588-3, 2013) published an aggressive critique of Bedford’s (J Geogr 109(4):159–165, 2010) proposals. However, the critique is based on a comprehensive misinterpretation of Bedford’s (J Geogr 109(4):159–165, 2010) paper. Consequently, Legates et al. (Sci Educ. doi:10.1007/s11191-013-9588-3, 2013) address arguments not actually made by Bedford (J Geogr 109(4):159–165, 2010). This article is a response to Legates et al. (Sci Educ. doi:10.1007/s11191-013-9588-3, 2013), and demonstrates their errors of interpretation of Bedford (J Geogr 109(4):159–165, 2010) in several key areas: the scientific consensus on climate change; misinformation and the public perception of the scientific consensus on climate change; and agnotology as a teaching tool. We conclude by arguing that, although no single peer-reviewed publication on climate change, or any other scientific issue, should be accepted without due scrutiny, the existence of a scientific consensus—especially one as overwhelming as exists for human-induced climate change—raises the level of confidence that the overall findings of that consensus are correct.  相似文献   

15.
This study investigated the influence of two different explicit instructional approaches in promoting more informed understandings of nature of science (NOS) among students. Participants, a total of 42 students, comprised two groups in two intact sections of ninth grade. Participants in the two groups were taught environmental science by their regular classroom teacher, with the difference being the context in which NOS was explicitly taught. For the “integrated” group, NOS instruction was related to the science content about global warming. For the “nonintegrated” group, NOS was taught through a set of activities that specifically addressed NOS issues and were dispersed across the content about global warming. The treatment for both groups spanned 6 weeks and addressed a unit about global warming and NOS. An open‐ended questionnaire, in conjunction with semistructured interviews, was used to assess students' views before and after instruction. Results showed improvements in participants' views of NOS regardless of whether NOS was integrated within the regular content about global warming. Comparison of differences between the two groups showed “slightly” greater improvement in the informed views of the integrated group participants. On the other hand, there was greater improvement in the transitional views of the nonintegrated group participants. Therefore, the overall results did not provide any conclusive evidence in favor of one approach over the other. Implications on the teaching and learning of NOS are discussed. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 395–418, 2006  相似文献   

16.
17.
Severe enduring reading- and writing-accuracy difficulties seem a phenomenon largely restricted to nations using complex orthographies, notably Anglophone nations, given English’s highly complex orthography (Geva and Siegel, Read Writ 12:1–30, 2000; Landerl et al., Cognition 63:315–334, 1997; Share, Psychol Bull 134(4):584–615, 2008; Torgesen and Davis, J Exp Child Psychol 63:1–21, 1996; Vellutino, J Learn Disabil 33(3):223, 2000). They seem rare in transparent orthography nations such as Finland, which use highly regular spelling and few spelling rules beyond letter sounds, and most children read and write with impressive accuracy by the end of Year 1 (Holopainen et al., J Learn Disabil 34(5):401–413, 2001; Seymour et al., Br J Psychol 94:143–174, 2003; Spencer and Hanley, Br J Psychol 94(1):1–29, 2003; J Res Read 27(1):1–14, 2004). Orthographic complexity has strong and diverse impacts on reading, writing and academic development (Aro, Learning to read: The effect of orthography, 2004; Galletly and Knight, Aust J Learn Disabil 9(4):4–11, 2004; Aust Educ Res 38(3):329–354, 2011). Despite these strong effects, orthographic complexity is rarely included as a variable in reading research studies considering evidence from both Anglophone (complex orthography) and transparent-orthography readers, or included in discussion of factors influencing results. This paper discusses the differences in reading-accuracy development and difficulties evidenced in studies of Anglophone (complex-orthography) and transparent-orthography readers. It then explores instances of orthographic complexity not being considered in studies where it may have impacted results. This disregarding of orthographic complexity as a variable in research studies appears an oversight, one likely to be contributing to continuing confusion on many aspects of reading and writing development in both healthy- and low-progress readers. Needs for research in these areas are discussed.  相似文献   

18.
Although there is a great deal of theoretical and practical scholarship related to immigrant students, the extant literature most often conflates the needs of English language learners with the needs of immigrant students (Goodwin in Educ Urb Soc 34(2):156–172, 2002; Sox in Theory Pract 48:312–318, 2009; Yoon in Am Educ Res J 49(5):971–1002, 2012). Findings from this study indicate that teachers in an area with a rapidly rising immigrant population perceived immigrant students to face four significant challenges beyond linguistic considerations. By analyzing interview and focus group data from six high school Civics teachers, this qualitative collective case study is positioned to make recommendations for teachers and teacher educators by bringing attention to the challenges facing immigrant students beyond the linguistic domain in a new gateway state.  相似文献   

19.
Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead’s (Sci Educ 81: 217–238, 1997, Science Educ 85:180–188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313–333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers’ attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.  相似文献   

20.
The original article by Kamberelis and Wehunt (2012) discusses an interesting and important research subject in science education as it focus on classroom interactions and the characteristics of the discourse production of interlocutors. The authors start from the premise that discourse heterogeneity is constitutive of social activities, which is supported by others like Mikhail Bakhtin (Speech genres and other late essays. University of Texas Press, Austin, 1981) and Erving Goffman (Frame analysis: an essay on the organization of experience. Harper and Row, London, 1974). They also present the definitions of three key elements that organize hybrid discourse: (a) lamination of multiple cultural frames, (b) shifting relations between people and their discourse, and (c) shifting power relations between people. Finally, the authors analyze how these three elements organize students’ science discourse in the classroom and how it contributes to the creation of a micro-community of practice capable of helping the emergence of a disciplinary knowledge that is legitimized by and strengthens the identity of the group. In the present commentary, I discuss how Michael Foucault’s (1970) concept of discursive procedure may help us to analyze the (often neglected) teacher’s role in the development of hybrid discourse practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号