首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
用数学归纳法证明不等式,特别是数列不等式,是一个行之有效的方法,也是中等数学中的一个基本方法,近些年高考试题中多次出现这类考题.运用这种方法证明不等式时,往往很多同学在证k到(k+1)的过程中卡了壳,断了思路,这是一种普遍现象.下面分析一下思路受阻的几种原因及转化策略.一、从k到(k+1)添项不足在从k到(k+1)的证明过程中,如果分析不透命题结构,就会造成添项不足,证明夭折.【例1】已知Sn=1+21+13+…+1n(n∈N*),用数学归纳法证明S2n>1+2n(n≥2,n∈N*).思路受阻过程:(1)当n=2时,S22=1+21+31+41=1+1123>1+22,命题成立.(2)设n=k(k≥3)时不等式成立,即S2k=1+21+31+…+21k>1+2k,则当n=k+1时S2k+1=1+12+31+…+21k+2k1+1>1+2k+2k1+1,要证明S2k+1>1+k2+1,只须证1+2k+21k+1>1+k2+1,即证2k1+1>21.显然,当k≥2时这是不可能的,解题思路受到阻碍.受阻原因分析:∵Sn=1+21+31+…+1n,∴S2k+1=1+21+13+…+21k+2k1+1+2k1+2+…+...  相似文献   

2.
证明与自然数有关的不等式问题 ,数学归纳法是首选 ,但完成 p(k+ 1 )的证明却是难点 .笔者收集了部分以证明不等式为出发点的高考题 ,发现它们均可以用数学归纳法完成 ,而且用分析法完成 p(k+ 1 )的证明 ,方法朴实简单 ,易于掌握 ,堪称通法 .例 1  (1 992年“三南”高考题 )求证 :1 + 12 + 13 +… + 1n<2n(n∈N ) .证明  (1 )当n=1时 ,左边 =1 <2 =右边 .不等式成立 .(2 )假设当n=k时 ,不等式成立 ,即1 + 12 + 13 +… + 1k <2 k ,那么  1 + 12 + 13 +… + 1k+ 1k + 1  <2 k+ 1k + 1 .现在只需证明2k+ 1k+ 1 <2 k+ 1…  相似文献   

3.
证明与正整数有关的命题时,常用数学归纳法,用数学归纳法证明的步骤是:(1)证明当n取第一个值n_0(n_0是满足命题的最小正整数)时,命题成立.(2)假设当n=k(k≥n_0,k∈N~*)时命题成立,证明当n=k+1时命题也成立.(3)由(1)(2)可知,命题对于从n_0开始的所有的正整数都成立.  相似文献   

4.
数学归纳法证不等式常用到放大或缩小的策略,通过放缩把命题强化.由于更强的命题提供更强的归纳假设,所以强化以后的命题更容易用数学归纳法证明.如何放缩使命题强化,具体问题要具体分析.本文给出如下3种常用的方法,供参考.例1求证:31!+42!+53!+…+n(n+2)!<21(n∈N+)分析:设n=k时有31!+42!+…+k(k+2)!<21,则n=k+1时,31!+…+(k+k2)!+k+1(k+3)!<21+(kk++31)!,无法判断n=k+1时命题是否成立,思路受阻.然而31!+42!+…+(n+n2)!<23!+43!+…+(nn++21)!=3-13!+44-!1+…+(n(+n+2)2)-!1=12!-31!+31!-41!+…+(n+11)!-1(n+2)!=21!-(n+12)!=12-(n+12)!<21…  相似文献   

5.
在近年的高考数学试题中 ,常以数列递推式中不等式的证明作为能力型试题 .这类问题综合性强、思维容量大、能力要求高 ,是同学们感到很棘手的一类问题本文通过具体的例子说明解这类问题的几种常用方法 .一、数学归纳法例 1 已知数列 an ,对任意n∈N ,均有an >0 ,且a2 n ≤an-an + 1 ,求证 :当n≥ 2时 ,an <1n +1.证明  ( 1)当n =2时 ,a2 ≤a1 ( 1-a1 )≤ a1 +( 1-a1 )22=14 <13 =12 +1.命题成立 .( 2 )假设当n =k(k≥ 2 )时 ,命题成立 ,即有   ak <1k+1≤ 13 (k≥ 2 ) .当n =k +1时 ,由题设有ak+ 1 ≤ak-a2 k.令 f(x) =x-x2 ,则f(x) =…  相似文献   

6.
一、证明不等式例1已知n为大于1的自然数,求证:(1+13)(1+15)…(1+12n-1)>2n+1√2.证明因为欲证的不等式的左边和右边都为正,故可构造数列狖an狚,并令an=(1+13)(1+15)…(1+12n-1)2n+1√2.显然,an>0,a2=835√>1.若对任意n≥2,nN,都有an>1,则原不等式得证.∵an+1an=(1+13)(1+15)…(1+12n+1)·2n+1√2n+3√·(1+13)(1+15)…(1+12n-1)=2n+2(2n+1)(2n+3)√>2n+2(2n+1)+(2n+3)2=1(n≥2),∴an+1>an>an-1>…>a2>1,故原不等式成立.二、解不等式例2解不等式4x+log3x+x2>5.解设f(x)=4x+log3x+x2,则其定义域为(0,+∞),且在定义域内是增函数.又∵f(1)=5…  相似文献   

7.
A组一、选择题1. (海南省 )已知 x =- 1是一元二次方程 x2 +mx + 1=0的一个根 ,那么 m的值是 (   )(A) 0 .  (B) 1.  (C) 2 .  (D) - 2 .2 . (南京市 )已知 x =2y =1是方程 kx - y =3的解 ,那么 k的值是 (   )(A) 2 .  (B) - 2 .  (C) 1.  (D) - 1.3.(北京市海淀区 )不等式组 2 x - 6 <0x + 5 >- 3的解集是 (   )(A) 2 3.4 .(天津市 )若 x2 + mx - 15 =(x + 3) (x - 5 ) ,则 m的值是 (   )(A) - 5 .  (B) 5 .  (C) - 2 .  (D) 2 .5 .(上海闵行区 )下列…  相似文献   

8.
一个不等式的推广   总被引:3,自引:0,他引:3  
文 [1 ]给出了下面一个三角形不等式 :设△ABC的三边长分别为a、b、c ,则13 ≤ a2 +b2 +c2(a +b +c) 2 <12 ,①当且仅当a =b =c时等号成立 .本文将不等式①推广为 :设△ABC的三边长分别为a、b、c .对于任意正整数n ,n >1 ,有13 n - 1≤ an+bn+cn(a +b +c) n<12 n- 1,②当且仅当a =b =c时等号成立 .证明 :根据文 [2 ],有an+bn+cn3 ≥ a +b +c3n,当且仅当a =b =c时等号成立 .由此易知第一个不等式成立 ,取等号的条件也成立 .下面证明第二个不等式 ,这等价于an+bn+cn<12 n - 1(a +b +c) n.③用数学归纳法 .当n =2时 ,由式①知式③成立 .设n …  相似文献   

9.
若一元二次不等式ax2+bx+c≥0恒成立,且a>0,则b2-4ac≤0.由它易得推广1:若(x-k1)2+(x-k2)2+…+(x-kn)2≥0,则(k1+k2+…+kn)2≤n(k21+k22+…+k2n),当且仅当k1=k2=…=kn时,取等号.证明:略.  相似文献   

10.
二元一次方程组及其解法A组1.若 xm- 1- 8yn+ 1=- 1是二元一次方程 ,那么 m= ,n = .2 .验证x =2y =312和x =3y =2 12是不是方程 3x +2 y =13的解 .3.在方程组 ax - 3y =52 x + by =1里 ,如果 x =12y =- 1是它的一个 ,那么 3( a - b) - a2 的值为 (   )( A) 4 .  ( B) 2 .  ( C) - 4.  ( D) - 2 .4 .若 5x2 ym与 4 xn+ m - 1y是同类项 ,则 m2 - n的值为 (   )( A) 1.     ( B) - 1.( C) - 3. ( D)以上答案都不对 .5.在下列方程组中 ,只有一个解的是 (   )( A) x + y =1,3x + 3y =0 .   ( B) x + y =0 ,3x + 3y =- 2 .( C…  相似文献   

11.
数列是高中数学的重点内容,它与数、式、函数、方程、不等式等有着密切的联系.求解数列问题往往涉及到重要的数学思想方法.为此,笔者结合多年的教学经验,对解决数列问题的常用方法作了一些探讨.一、数学归纳法数学归纳法比较典型地用于这两类题目中:1.确定一个表达式在所有自然数范围内是成立的;2.确定一个其他的形式在一个无穷序列是成立的.因此它是解决数列问题的常用方法之一.例1已知数列{an}中,a1=-23,其前n项的和Sn满足an=Sn S1n (2n≥2),计算S1,S2,S3,S4.猜想Sn的表达式,并证明.解析:当n≥2时,an=Sn-Sn-1=Sn S1n 2,Sn=-Sn-11 (2n≥2).求出S1,S2,S3,S4的值后,猜想Sn=-nn 21.证明(:1)当n=1时,S1=-23=a1,结论成立.(2)假设n=k时,猜想成立,即Sk=-kk 12成立.那么n=k 1时,Sk 1=-Sk1 2=--kk 112 2=-kk 23=((-kk 11)) 12.即n=k 1时,猜想成立.综合(1)(、2),可知猜想成立.点评:数学归纳法的重难点是处理好n=k 1时的情况.二、裂项相消法裂项相消法...  相似文献   

12.
一、根据条件直接猜想例1已知数列{an}中的各项分别为182××132,…,8n(2n-1)2(2n+1)2,…,Sn是数列的前n项和,计算可得S1=98,S2=2254,S3=4489,S4=8810.根据结果猜测Sn的表达式,并用数学归纳法证明.解由S1=1-19,S2=1-215,S3=1-419,S4=1-811,猜想Sn=1-(2n1+1)2(n缀N+).证明如下:(1)当n=1时,S1=1-312=89,等式成立.(2)设当n=k(k≥1,k缀N)时,Sk=1-(2k1+1)2成立.∵an=(2n-1)82(n2n+1)2=(2n1-1)2-(2n1+1)2,∴Sk+1=Sk+ak+1=1-(2k1+1)2+(2k1+1)2-(2k1+3)2=1-[2(k+11)+1]2.由此可知,当n=k+1时,等式也成立.根据(1)、(2)可知,等式对任何n缀N+都…  相似文献   

13.
一个不等式的指数推广及应用   总被引:3,自引:0,他引:3  
文 [1]给出了一个不等式 :2 (n+1- 1) <∑nk=11k<2 n - 1  (n>1) . ( )本文首先用初等数学知识 ,借助于算术—几何均值不等式对 ( )式进行指数推广 ,从而把( )式统一到本文定理之中 ,最后指出该定理的应用 .定理  11- p[(n+1) 1 -p - 1]<∑nk=11kp<11- p· n1 -p - 11- p+1(p∈ Q且 p>0 ,p≠ 1,n>1) .定理证明依据如下引理 :引理 1  1kp<11- p[k1 -p- (k- 1) 1 -p](p∈ Q且 P>0 ,p≠ 1,k>1) .证明  (1)当 0 m kt· (k- 1) m -t,∴k- m- tm >m …  相似文献   

14.
数学归纳法是一种重要的数学方法,运用数学归纳法证题的步骤是:(1)证明当n取第一个值n0(n0≥1)时,命题成立;(2)假设n=k(k∈N*且k≥n0)时命题成立,从而推出当n=k+1时,命题也成立.根据(1)、(2)可知,对一切n∈N*(n≥n0)命题成立.数学归纳法的第一步是验证命题的基础,第二步是论证命题的依据(传递性成立),两个步骤密切相关,缺一不可.需要注意的是:步骤(1)一般选取命题中最小的正整数n0作为起始值进行验证;步骤(2)推证当n=k+1时命题成立的前题,必须是当n=k时命题成立这个归纳假设,否则推理无效.作差法若命题中有关于n的连加式或数列的前n项和,则…  相似文献   

15.
问题 试比较以下三对数的大小 :(1) 2 0 0 3 2 0 0 4与 2 0 0 42 0 0 3 ;(2 )log2 0 0 3 2 0 0 4与log2 0 0 42 0 0 5 ;(3 ) 1+ 12 0 0 32 0 0 3 与 1+ 12 0 0 42 0 0 4.赏析 (1) 第一对数的大小比较 ,可以转化为比较nn+1与 (n + 1) n(n∈N ,n≥ 3 )的大小 ,实际上 ,有结论nn+1>(n+ 1) n,其中n∈N ,n≥ 3 .证明有以下方法供参考 .证法 1 凡是与自然数有关的命题 ,都可以考虑用数学归纳法证明 ,该结论也一样 .(i)当n=3时 ,3 4 =81>43 =64成立 ;(ii)假设n =k ,k≥ 3时 ,kk+1>(k + 1) k成立 ,则当n =k+ 1时 ,有(k+ 1) k+2(k + 2 ) k+1=(k +…  相似文献   

16.
等比数列求和公式为Sn=a1(11--qq n)(q≠1),有时用此公式证明不等式可简化证明过程.将数列知识与不等式知识相融合,既可培养学生思维的灵活性和创造性,又可简化思路、优化解题过程.一、直接公式法例1求证:1+21!+31!+41!+…+n1!<2(n≥2,n缀N).证明1+12!+31!+41!+…+n1!<1+12+212+123+…+21n-1=1×(11--121n)2=2-12n-1<2(n≥2,n缀N).故原不等式成立.小结本题直接运用等比数列求和公式,起到了立竿见影的效果.二、求和公式的逆用例2已知等差数列{an}和等比数列{bn}中a1=b1=a,a2=b2=b(b>a>0).求证:当n>2且n缀N时,bn>an.证明an=a+(n-1)(b-a)…  相似文献   

17.
数学归纳法是数学里一种重要的证明方法。下面通过实例,列举几种证法。一、代数恒等式的证明一般采用的证明方法是在等式两边同加或同乘以第 k+1项,然后适当变形即可得证。例1 求证:1-(1/2)+(1/3)-(1/4)+…+/1(2n-1)-1/(2n=1/(n+1)+1/(n+2)+…+1/(2n)证明1°当 n=1时,左边=1-1/2=1/2.右边=1/(1+1)=1/2.等式是成立的。2°假设 n=k(k≥1)时等式成立,即  相似文献   

18.
证明形如a1 a2 … an≥f(n)的不等式,通常是用数学归纳法,但若将f(n)看做是一个数列{bn}的前n项和,则可通过证明an≥bn进而证明a1 a2 … an≥b1 b2 … bn=f(n)成立.  相似文献   

19.
数学归纳法是证明和自然数相关的不等式的最有效方法,其证明的关键是如何实现从“n=k时原不等式成立”(这个不等式不妨称之为“假设不等式”)到“n=k+1时原不等式成立”(这个不等式不妨称之为“目标不等式”、的过渡.本文介绍用数学归纳法证明不等式的若干技巧和对策,供大家参考.  相似文献   

20.
现行高中《代数》下册第 12 5页第 6题有如下题目 :用数学归纳法证明 :1 12 2 132 … 1n2 <2 - 1n(n∈N,且 n≥ 2 ) .(以下称原命题 )受原命题启发 ,根据“a相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号