首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文〔1〕阐述了定义在闭区间[a,b]上的函数黎曼积分三种定义的等价性,本文的目的是把上述三个定义的等价性推广到积分区域为平面上的有界可求面积的闭区域上去。此时把积分区域分划成一些小区域以后的边界不是只有两个端点,而且一条封闭的曲线,故不存在“左(右)积分”的提法。那么是否可以在这些小区域上取某些点作为类似于定积分中的ξ_i呢?回答是不一定的。我们可以考虑二元函数 1(当x,y均为有理数时) f(x,y)= 0(当x,y一个为有理数,另一个为无理数时) -1(当x,y均为无理数时)(x,y)∈D,D是有界可求面积的闭区域,由二重积分的定义知f(x,y)在D上不可积。若把D任意分划成n个区域D_1、D_2、…、D_n。(ξ_i,η_i)为小区域D_i的边界  相似文献   

2.
一、二重极限   定义:设函数发f(x,y)在区域D内有意义,P0(x0,y0)是D的内点,如果对于任意给定的正数ε,总存在正数δ,使得对于D内且适合不等式0<|P0P|=(x-x0)2 (y-y0)2<δ的一切点p(x,y),都有|f(x,y)-A|<δ成立,则称常数A为函数f(x,y)当x→x0,y→y0的二重极限,记作limy→y0x→x0 f(x,y)=A或f(x,y)→A(x→x0,y→y0)……  相似文献   

3.
众所周知,对称性不论在定积分还是在重积分的计算中都起到了简化运算的作用.曲线积分和曲面积分作为定积分和二重积分的推广同样可以利用对称性来简化其计算.定理1:设曲线 l 是关于 y 轴对称的光滑曲线,l 的方程为:y=y(x).(-a≤x≤a)函数,f(x,y)在 l 上有定义且连续,那么,当,f(x,y)为 x 的奇函数时,f(x,y)ds=0当f(x,y)为 x 的偶函数时,  相似文献   

4.
在讨论二重积分问题时,常常利用其对称性以简化运算或证明某些结论。总结如下: 命题1 设函数f(x,y)在平面有界闭区域D上连续。 (1)若区域D关于y轴对称,则f(x,y)dσ= (2)若区域D关于x轴对称,则f(x,y)dσ= 证 (1)积分区域D关于y轴对称,D:f(x,y)dσ=dyf(x,y)dx。当f(x,y)关于x为奇函数时,f(x,y)dx=0,故f(x,y)dσ=0;当f(x,y)关于x为偶函数时,f(x,y)dx=2f(x,y)dx,故f(x,y)dσ=2dyf(x,y)dx=2f(x,y)dσ, (2)证略 例1 计算二重积分dσ其中D∶+1 解 由于积分区域D关于x…  相似文献   

5.
<高等数学>和<数学分析>等教材,定义无穷限广义积分∫+00-00f(x)dx收敛条件是∫-00f(x)dx和∫+00 af(x)dx同时收敛,笔者通过分析、比较提出更合理的收敛定义.即∫+00-00f(x)dx的收敛条件只需Lim A→+00∫A -Af(x)dx收敛即可.无界函数广义积分可得同样的结论.  相似文献   

6.
所周知的了。第一型曲线积分的几何意义是什么?现行教材中很少进行讨论。教学中,引导学生对此进行思考,对于深刻理解第一型曲线积分的定义,简化第一型曲线积分的计算都具有实际意义。类比定积分、二重积分的几何意义,不难发现,当二元函数f(x,y)在分段光滑的曲线L上非负连续时,第一型曲线积分∫_Lf(x,y)ds表示以L为准线、母线平行z轴的柱面介于xoy平面与曲面z=f(x,y)(视其定义域为包含L的平面区域)之间的那部分柱面的面积。如果f(x,y))在L上不满足非负条件,可将xoy平面上方曲面面积赋以“ ”号,xoy平面下方曲面面积赋以“-”号,那么∫_Lf(x,y)ds表示xoy平面上、下方曲面面积的代数和。根据第一型曲线积分的几何意义,某些第一型曲线积分的计算将得以简化,而某些第一型曲线积分的计算结果将会一目了然。  相似文献   

7.
我们知道,对于对称区间[-a,a]上的定积分Ⅰ=integral form n=(-a) to a(f(x)dx),若f(x)为奇函数,则I=0;若f(x)为偶函数,则I=2 integral form n=0 to a(f(x)dx),这个结论对于某些定积分的计算是比较方便的。 关于坐标轴或坐标面对称区域上的重积分有与上面类似的性质,它对某些重积分的计算,也是方便的。这些性质是: 定理一 对于I=,若D关于y轴对称,记对称的两部分区域为  相似文献   

8.
由无穷限广义积分和无界函数的广义积分的关系,得出了无界函数的广义积分integral from n=a to b (f(x)dx(a为奇点))收敛的两个性质。  相似文献   

9.
我们有 命题 设f(z,x,y)是关于z,x,y的函数,设D是平面上一个点集。如果对任意固定的(x,y)∈D,f(z,x,y)是关于z的单调函数(例如一次函数)且 当a0;f(b,x,y)>0(*),则对a≤z≤b,(x,y)∈D有f(z,x,y)>0。  相似文献   

10.
一、广义积分定义的几种形式 在有关微积分内容的一些专著或教材上,对有界函数f(x)在无穷区间上的广义积分的定义形式不完全相同,较常见的有以下5种形式(以有界函数f(x)在无穷区间[a, ∞]上为例): 定义形式 1:设函数f(x)在区间[a, ∞)上连  相似文献   

11.
函数是高中数学的主线,是每年高考必考查的重点内容之一。函数的周期性问题在历年高考中屡见不鲜,备受青睐,许多同学在解这一类问题时,难以找到适当的突破口,因而这一类问题得分率较低.对此笔者总结一些经验教训,从以下几个方面谈谈供广大师生参考.一、周期函数的定义及重要结论1.周期函数定义设函数y=f(x)的定义域为D,若存在常数T≠0,使得对一切x∈D,且x T∈D时都有f(x T)=f(x),则称y=f(x)在D上的周期函数,非零常数T叫这个函数的周期.2.两个重要结论(1)设定义在实数R上的函数f(x)对任意x∈R恒有f(x a)=f(x b)(a≠b)成立,则函数f(x)是以…  相似文献   

12.
本文将在高中数学教材的基础上,对周期函数的定义域,最小正周期以及周期函数的复合进行一些发掘,以期抛砖引玉。定义1 函数y=f(x)是定义在数集D上的函数。如果存在非零常数T,使得对任意x∈D,总有f(x T)=f(x),我们就把y=f(x)叫作D上的周期函数,T叫这个函数的周期。  相似文献   

13.
本文利用彼龙(P)积分[1]构造了“彼龙二重积分”。此积分在有界闭区域上比L积分更加广义。§1.彼龙二重积分概念一、平面点集的一些概念。如果有界闭区域D是由曲线x=a,x=b(a相似文献   

14.
当点(x,y)在平面上一个区域F上变动时。求二元函数f(x,y)的最值,这类问题称之为平面区域最值问题。本文以竞赛题为例说明这类问题的解法。 例1 若实数x、y满足|x| |y|≤l,求z=x~2-xy y~2的最小值和最大值。(1975年苏联大学生竞赛题)  相似文献   

15.
计算三重积分,在直角坐标系下,首先将空间区域Ω向某个坐标平面作投影。如果向xoy面作投影,则设其投影区域为Dq。然后在平面区域Dq内任取一点(x,y),过点(x,y)作Z轴平行线,设交区域Ω的边界曲面S于点(x,y,z_1(x,y))与点(x,y,z_2(x,y)),(设z_1(x,y)相似文献   

16.
在处理直角坐标系xOy内的两点集 M={(x,y)|f(x,y)=0,x∈A,y∈B}, N={(x,y)|g(x,y)=0,x∈C,y∈D}的交集问题时,容易想到用代数的方法考虑方程组{f(x,y)=0 g(x,y)=0}在区域p={(x,y)|x∈A∩C,y∈B∩D}内是否有解的问题,要在平面子区域p内判断一个方程组是否有解,一般说来比在整个平面内判断要困难得多,然若能注意到两点集M、N的几何性质  相似文献   

17.
一、周期函数的定义设函数y=f(x),(x∈D),如果存在非零常数T,使得对任何x∈D都有f(x+T)=f(x),则函数f(x)为周期函数.非零常数T叫做y=f(x)的一个周期.如果所有的周期中存在一个最小的正数,那么这个最小正数就叫做y=f(x)的最小正周期.  相似文献   

18.
广义积分定义在各种教材中的定义方式不尽相同,然而大同小异,笔者通过对各种教材中的定义的学习、比较、思考后,以目前正在使用的大学专科小学教育专业试用课本《数学分析》上的“函数f(x)在区间[a, ∞)上的广义积分”定义为例,列举部分教材上的定义,指出这类定义之不尽合理之处,并试着重新对函数f(x)在区间[a, ∞)上的广义积分概念给出定义.  相似文献   

19.
1.函数的定义及求值问题例1(2008年高考陕西卷)定义在R上的函数f(x)满足f(x y)=f(x) f(y) 2xy(x,y∈R),f(1)=2,则f(-3)等于().A.2B.3C.6D.9解:由f(1)=2,令x=y=1,得f(2)=f(1) f(1) 2=6.再令x=1,y=2,得f(3)=f(1) f(2) 4=12.取x=-y,得f(0)=f(x) f(-x)-2x2.由f(x y)=f(x) f(y) 2xy,  相似文献   

20.
本人就几类抽象函数的问题进行具体的求解说明: 一、利用赋值特殊值来求解【例1】已知函数f(x)定义在R上,且对任意x,y∈R,满足f(x+y)=f(x)+f(y),则f(x)一定是( ) A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号