首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
先将积分中值定理复述如下:定理1 如果 f(t)为区间[a,x]上的连续函数,那么存在数 c∈(a,x),使得∫_a~xf(t)dt=f(c)(x-a).任何学过初等微积分的人都熟知这个重要的定理。但当 x 趋于 a 时,c 的值如何呢?实际上,这时 c的值将趋于 a 和 x 的中点。这一事实往往不被人们注意。下面给出这个结论及其简短的证明。定理2 如果 f(t)在 a 点可微,f′  相似文献   

2.
零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.传统的函数零点存在性定理的考查,如:  相似文献   

3.
对于Robin问题{x^n=f(t,x,x^1); a0x(a)-a1x^1(a)=A,b0x(b)+b1x^1(b)=B在主要假设f,fx,fx^1连续,fx≥-β(t),-a(t)≤fx^1≤a(t)(1+|x^1|)之下,给出一个存在唯一解的充分条件。  相似文献   

4.
微分中值定理的证明 由罗尔中值定理得出: 定理一:若函数f(x),至少存在一点屯,乙〔(a, If(a、 }f(b、 !f,(仓)证明:作辅助函数F(x) g(x),印(x)是[a,b),使得:‘(a)甲(a)g(b)甲(b)g‘(屯)甲产(忿)b〕上的连续函数,在(.,b)内可导,败g(a)g(b)g(x)甲(a)甲(b)甲(x)﹄、.尹、.了、.少 a .bX了了.、了.、r、rl厂Tl .11.leses.....口.J................ △F(x)二因为f(x)户g(x),甲(x)在[。,b]上连续,在(a,b)内可导,所以F(x)在〔a,b〕上连续,在(a,,b)内可导,且F(a)=F(b)二0由罗尔中值定理得,在(a,b)内至少存在一点毛,使得F(七)=O,从而有: }f(a)g(…  相似文献   

5.
书〔1〕中证明了下面的R-S积分第一中值定理(参见书〔1〕,第191页命题27)。以后提到积分都是指Riemann-Stietjes积分。定理1 (第一积分中值定理)若在〔a,b〕上f连续,a单词增加,则存在点x,使 a≤X≤b, integral from n=a to b f(t)da(t)=f(x)〔a(b)-a(a)〕。本章(书〔1〕中的第三章)后面的练习题38指出,若定理1中a是严格单调增加函数,就有x∈(a,b),即定理1可改进为:  相似文献   

6.
一、试题呈现设函数f(x)=x2+2ax+a,若函数f(x)与函数f[f(x)]的值域相同,则实数a的取值范围为.第一步:分析f(x)的单调性与最值,易知f(x)在(-∞,-a)上递减,在(-a,+∞)上递增,f(x)min=f(-a)=a-a2,∴f(x)的值域是[a-a2,+∞).第二步:换元分析两函数.设t=f(x),则f[f(x)]=f(t),函数f(t)在t∈(-∞,-a)上递减,在t∈(-a,+∞)上递增,则y=f(t)(t≥a-a2)的值域也是[a-a2,+∞).  相似文献   

7.
在一般教科书中积分中值定理都叙述为:设f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,则存在ξ∈[a,b),使得 (integral from n=a to b)f(x)g(x)dx=f(ξ)(integral from n=a to b)g(x)dx。杨新民在[1]中提出了相反的问题:若f(x)在[a,b]上连续,g(x)在[a,b]上可积且不变号,对[a,b)内每一点ξ能否找到c,d∈(a,b),满足c<ξ相似文献   

8.
在f(t,x),f.(t,x),α(t),α′(t),β(t)连续,fx(t,x)≥-β(t),β(t)≤π2+,且条件下,证明了拟线性两点边值问题对于任给实数a,b都有唯一解.  相似文献   

9.
在f(t,x),fx(t,x)α(t),α′(t),β(t)连续,fx(t,x)≥-β(t),β(t)≤π^2 [α^2(t)-2α′(t)]/4,且β(t)≠π^2 [α^2(t)-2α′(t)]/4条件下,证明了拟线性两点边值问题x″=α(t)x′ f(t,x),x(0=a,x(1)=b,对于任给实数a,b都有唯一解。  相似文献   

10.
本文就零值定理在在二次函数中的应用,谈一点我们的看法。零值定理:设f(x)是闭区间[a,b]上的连续函数且在区间两端点的数值f(a)、f(b)异号,那么一定有一点C(a相似文献   

11.
本文考虑了微分中值定理及积分中值定理的反问题,证明了下述结果:定理1 设函数f(x)及g(x)在闭区间[a,b]上连续,在开区间(a,b)上可导.且对任意ξ∈(a,b).g′(ξ)>0,F(x)=F(x)-F(ξ)/g(x)-g(ξ)为x的严格增函数(除ξ点外)。那么存在x_1,x_2∈(a,b),x_1<ξ相似文献   

12.
研究了超前型二阶非线性扰动微分不等式x(t){(a(t)φ(x(t))x′(t))′ p(t)x(′t) q(t)f(x(g(t)))}≤0在扰动系数函数p(t)为非正情况下解的振动性与渐近性,给出其解是振动或最终单调趋于零的一个充分条件。  相似文献   

13.
“若函数f(x)与g(x)满足下列条件:①在闭区间[a,b]上连续;②在开区间(a,b)内可导,且对任意x∈(a,b),g′(x)≠0。则在(a,b)内至少存在一点ξ,使 (f(b)-f(a))/(g(b)-g(a))=f′(ξ)/g′(ξ) (*)” 众所周知,这是微分学的基本定理之一:柯西中值定理((*)式称为微分中值公式)。关于它的证明,关健是在于恰当地构造一个辅助函数,再利用罗尔定理。一般教科书上构造的辅助函数是:F(x)=f(x)-f(a)-(f(b)-f(a))/(g(b)-g(a))[g(x)-g(a)]  相似文献   

14.
零点定理是必修1(人教版)的内容,是新教材新增的一个重要定理,有着广泛的应用.什么是零点呢?对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点.零点定理:如果函数在区间[a,b]上的图象是连续不断的一条曲线,且满足f(a).f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c  相似文献   

15.
<正> Grace和Lalli在[1]中分别讨论了方程 x″(t)+q(t)f(x(t))g(x′(t))=0 (E_1) 和 x″(t)+q(t)f(x(σ(t)))g(x′(t))=0 (E_2)的解的振动性质,获得了关于方程(E_1)和(E_2)的两个振动性定理,文[2]讨论了二阶非线性时滞微分方程 (a(t)ψ(x(t))  相似文献   

16.
微积分基本定理通常叙述为: 若f(x)在[a,b]上连续,则 〈1〉Φ(x)=integral from n=a to x(f(x)dx)是f(x)在[a,b]上的一个原函数,即Φ’(x)=f(x)x∈[a,b]; 〈2〉若F(x)是f(x)在[a,b]上的任一原函数,则 integral from n=a to b(f(x)dx=F(b)-F(a)) (称为牛顿—菜布尼兹公式) 此定理就其对微积分的重要性来讲,称之为基本  相似文献   

17.
在f(t,x),f_x(t,x),α(t),α′(t),β(t)连续,且条件下,证明了拟线性两点边值问题对于任给实数a,b都有唯一解.  相似文献   

18.
函数f(x)(?)(x)和g(x)(?)(x)分别在[a,b]上连续,在(a,b)内(?)(x)≠0则必存在一点ξ∈(a,b)使得g(ξ)integral from n=1 to ab f(x)(?)(x)dx=f(ξ)integral from n=1 to b(a)g(x)(?)(x)dx成立.这个结论对于多个函数对f_i(x)(?)(x),i=1,2,…,2n也成立.  相似文献   

19.
本文介绍了一个循环差集的存在性定理.主要结果是:设f(x)是域F2^d=L上一个置换多项式,如果f(x)是一个几乎完全非线性函数,则Im△f(x)是L^ =L\{0}中一个循环差集当且仅当对任意a(≠0,1)∈Fq,|Sa|=q=2^m.这里,Sa={(x,y)|△f(x) a△f(y)=0}.△f(x)=f(x 1) f(x)|Sa|表示集合Sa的元素个数,作为应用,证明了在一定条件下,对f(x)=x^3。和f(x)=x^5,Im△f(x)是L^ 中一个循环差集.  相似文献   

20.
本文讨论如下方程-x″ a(t)x(t)=f(t,x(t),x(α(t))),t∈J=[0,T]x(0)=x(T),x′(0)=x′(T)多重正解的存在性.所得结果推广了已有文献中的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号