首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
如图1,若OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,则PD=PE;反之,若PD⊥OA于D,PE⊥OB于E,且PD=PE,则点P在∠AOB的平分线上,即OC平分∠AOB.这就是角平分线的性质定理及其逆定理,图1是定理的基本图形,很多几何题都含有该图的“影子”,因而可以简捷地利用基本图形来解题.例1已知:如图2,BD平分∠ABC,AD=CD,求证:△ABD≌△CBD.分析:直接证明这两个三角形全等缺少条件,由BD平分∠ABC联想到角平分线性质定理的基本图形,过D作DE⊥AB,DF⊥BC,垂足分别是E、F,则DE=DF:由“HL”易证Rt△DFC≌Rt△…  相似文献   

2.
课本第10面有这样两道拓广探索题.第12题:如图1—1,AB⊥l,BC⊥l,B为垂足,那么A,B,C三点在同一条直线上吗?解析:A,B,C三点在同一条直线上,证明如下.证法一:因为AB⊥l,BC⊥l,又因为经过直线上一点B有且只有一条直线与已知直线l垂直,所以A,B,C三点在同一条直线上.  相似文献   

3.
一、指导学生由图索果学生在看图时,往往只是片面地依靠已知条件,对于图形的性质、图形中隐含的条件往往“视而不见”,从而常常使解题陷入困境.为了解决这一难题,教师在授课时,应重点指导学生在看到图形时,要随之联想到或猜想到该图形应有的性质及结论,并认真分析图形的特征.比如看到平行线,应想到平行线的性质;看到线段的垂直平分线,就想到线段中垂线的性质;看到一组平行线被几条直线所截,就想到平行线分线段成比例定理,并想到哪些线段成比例.这样,对培养学生的识图能力,提高学生思维的灵活性,强化对图形性质的记忆、理解具有十分重要的意义.例1.已知:如图1,AB⊥BD,ED⊥BD,垂足分别为B、D,求证:ACEC=BCDC.分析:看到AB⊥BD,ED⊥BD,联想到结论“垂直于同一条直线的两条直线互相平行”,由图形特征,联想到“三角形一边平行线的性质”可证得结论.(证明略)二、指导学生通过看图变隐含为显露在几何图形中往往较多地出现一些图形的边和角,在读题和看图时,对已知的和未知的一时难以全部记住,这时,应注意图和意的结合,指导学生应用恰当标记将已知、未知标出,以强化印象,引导学生顺利找到做题方向,确定解题方法.比如,看到垂直,就在垂...  相似文献   

4.
课本第10面有这样两道拓广探索题. 第12题:如图1-1,AB⊥l,BC⊥l,B为垂足,那么A,B,C三点在同一条直线上吗?  相似文献   

5.
人教版七年级数学(下)课本第10面第12题:如图1,AB⊥l,BC⊥l,B为垂足,那么A,B,C三点在同一条直线上吗?答案:A,B,C三点在同一条直线上,可以用以下几种方法进行证明.一、利用垂线性质分析一:注意到AB⊥l,BC⊥l,联想到垂线的性质"过一点有且只有一条直线与已知直线  相似文献   

6.
垂直的概念在我们的日常生活中经常遇到,那么如何才能学好垂直这一概念呢?笔者以为应注意掌握以下几个问题一、正确理解垂线的概念当两条直线相交成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线是另一条直线的垂线,它们的交点叫做垂足如图1,直线AB与CD互相垂直,记作“AB⊥CD”或“CD⊥AB”,读作“AB垂直于CD”或“CD垂直于AB”,如果垂足是O,可记作“AB⊥CD,垂足为O”由此可知,由两条直线互相垂直,我们可以有下列的简单推理(如图1):因为∠AOC=90°(已知),所以AB⊥CD(垂直的定义)反过来,因为AB⊥CD(已知)…  相似文献   

7.
三角形全等是初中几何的一个重点内容 ,同时也是一个难点 ,特别是当三角形出现重合部分时 ,更难找出对应角和对应边。现介绍一种方法———分离图形法 ,即把所需证明全等的两个三角形从原图形中平移出来。例 1 求证 :等腰三角形两腰上的高相等。已知 :如图 1 ,在△ABC中 ,AB =AC ,BD⊥AC ,CE⊥AB ,垂足分别是D、E 求证 :BD =CE 分析 :BD和CE可分别看成△ABD和△ACE的两条边 ,便可把BD和CE所在三角形分离出来 ,如图 1所示 ,更易找出这两个三角形的相等的边和角。图 1证明 :∵BD⊥AC ,CE⊥AB∴∠ADB =∠AEC =90°在△AB…  相似文献   

8.
<正>一、提出猜想在学习反比例函数时,我们知道有这样的结论:以函数y=4x为例,在其第一象限内的图象上取两点A(1,4)、B(4,1),过点A作AF⊥x轴、AC⊥y轴,垂足为F、C,过点B作BD⊥x轴、BE⊥y轴,垂足为D、E,分别画出直线AB、CD、EF,容易发现∠BGD=∠CDO=∠EFO=  相似文献   

9.
研究“点”移动组成变化的线段、图形,是同学们学习中的一个难点,也是中考的一个考点,现通过以下例题的讲解,帮助同学们正确解答有关“动点”方面的问题。一、“动点”求定值例1在直角三角形ABC中,∠C=90°,D是BC上一点,且AD=BD,P是AB上一动点,PE⊥BC,PF⊥AD,垂足为E、F。求证:PE PF为定值。分析:P点在AB上移动,因此PE、PF是变化的线段,而固定不变的线段有AB、AC、BC、CD、AD。只能用固定不变的线段表示PE PF的值,PE PF会等于以上哪一条线段呢?下面我们用“割补法”证明PE PF=AC为定值。证明:过P点作PH⊥AC,垂足…  相似文献   

10.
等腰三角形的顶角平分线、底边上的中线。底边上的高互相重合.等腰三角形的这一性质称“三线合一”定理.这个定理可分解为三个定理:(1)在△ABC中,AB=AC.若AD是角平分线,则AD⊥BC且BD=DC;(2)在△ABC中,AB=AC.若AD是中线,则AD⊥BC且/DAB=/DAC;(3)在△ABC中,AB=AC.若AD是高,则BD=DC且/DAB=/DAC.由此可知,‘“三线合一”定理有三个基本功能:回.证明线段相等;2.证明两角相等;3.证明两条线段(或直线)互相垂直.下面举例说明“三线合一”定理在证题中的应用.侈IJI女日图1,在thA…  相似文献   

11.
题目给定锐角三角形PBC,PB≠PC.设A、D分别是边PB、PC上的点,连结AC、BD相交于点O.过点O分别作OE⊥AB,OF⊥CD,垂足分别为E、F,线段BC、AD的中点分别为M、N.  相似文献   

12.
在数学教学中,充分利用典型习题引导学生进行开放性探究,对学生思维的深化及创新能力的培养往往能起到事半功倍的作用.例题 已知:如图1,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F.求证:1AB 1CD=1EF.证明 因为AB⊥BD,CD⊥BD,EF⊥BD.所以AB∥EF∥CD.所以EFAB=DFBD,EFCD=EFBD.所以EFAB EFCD=DF BFBD=BDBD=1.所以1AB 1CD=1EF.图1        图21 发散思维 探究结论探究1 已知:如图2,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,若AB=a,CD=b,⊙E与BD相切于F,求⊙E…  相似文献   

13.
原题如图1,AB⊥BD,CD⊥BD,垂足分别为B,D,AD和BC相交于点E,作EF⊥BD于F,求证:  相似文献   

14.
本文旨在对一道成题,就其证明方法、潜在的结论、图形的变化与延伸做一些开发工作,以便在教学和学习中灵活掌握和应用这类题. 题目:如图1,已知BD是等腰Rt△ABC腰上的中线,AE⊥BD,垂足为E,AE的延长线交BC于F,连结  相似文献   

15.
本期问题 初27.已知直线m过⊙O的圆心,直线l⊥m,M是垂足,过l上两点A,B作⊙O的切线AC,BD,C,D是切点。 (1)若A,B在点M同侧,且AM>BM,当AC-BD=AB时,l与⊙O相切; (2)若A,B在点M两侧,且AC BD=AB时,  相似文献   

16.
一、给定锐角三角形PBC,PB≠PC.设A,D分别是边PB,PC上的点,连接AC,BD,相交于点O.过点O分别作OE⊥AB,OF⊥CD,垂足分别为E,F,线段BC,AD的中点分别为M,N.  相似文献   

17.
1 一个假命题命题:任一个三角形是等腰三角形.已知:△ABC(如图1).求证:△ABC 为等腰三角形.证明:如图2,作 AB 的中垂线 MD 交∠ACB 的平分线于 D 点,分别作 DE⊥BC,垂足为 E,DF⊥AC,垂足为 F,连结 BD、AD,则易知:DE=DF,BD=AD.  相似文献   

18.
651.在凸四边形ABCD中,边AB、DC的延长线交于点E,边BC、AD的延长线交于点F,若AC上BD于G,求证:∠EGC=∠FGC.证:如图1,过E、F分别作直线BD的垂线.垂足分别为M、N.由AG⊥BD知ME∥AG∥NF,∴MG/BG=AE/AB,NG/DG=AFAD.  相似文献   

19.
在《相似三角形》一章的学习中遇到这样一道题: 例1 如图1,AB⊥BD,CD⊥BD,垂足为B、D,AD与BC相交于点E,EF⊥BD.可证明1/AB 1/CD=1/EF.  相似文献   

20.
中学数学各科中,都存在一些讨论题,立体几何的讨论题,其内容常涉及在同一题设下图形具有几种不同的位置。它虽然在现今的立几书本中可见到,但因缺乏集中叙述而分散于各章节,由此对学生的学习带来困难,以致常常顾此漏彼,甚至某些小册子上也发生类似缺陷。例如某数学小册子上曾写着已知两相交成θ角的直线与一平面分别相交成α,β角,求这两直线在平面内射影夹角的余弦的题,该小册子[注]上的解法简略录抄于下: 设BD⊥平面M,垂足为D,连结AD,CD,则AD,CD分别是AB,BC在平面M内的射影(如图1)。∴∠BAD=α,∠BCD=β,设∠ABC=θ,BD=h,∠ADC=φ,根据余弦定  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号