首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将立体空间的问题转化为二维的平面问题,将未知向已知转化,这是解决简单多面体的策略之一.例1(1999年全国卷)如图1,已知正四棱柱ABCD-A1B1C1D1,点E在棱D1D上,截面EAC∥D1B,且面EAC与底面ABCD所成的角为45°,AB=a.(1)求截面EAC的面积;(2)求异面直线A1B1与AC之间的距离;(3)求三棱锥B1-EAC的体积.分析:本题主要涉及空间线面关系,二面角和距离概念.问题(1)属于截面积计算问题,可按截面的几体形状直接计算.因此,需求AC边上的高.问题(2)属于异面直线间的距离计算,需找出异面直线间的公垂线,然后可通过等价转换变成平面正方形内线…  相似文献   

2.
求两条异面直线间的距离是立体几何中一类重要问题,也是难度相对较大的一类问题.本文结合“人教版”数学第二册(下B)51页(习题9,8)的第4题探究此类问题的几种解题思路,找到解决此类问题的几种常见方法. 已知正方体ABCD—A'B'C'D'的棱长为1,求直线DA'与AC的距离. 一、问题转化法当两条异面直线的公垂线段不易做出时,  相似文献   

3.
棱长为1的正方体ABCD-A1B1C1D1中,求异面直线A1C1与B1C距离.方法1:直接法也叫定义法.当公垂线直接能作出时,直接作出并证明异面直线的公垂线段,是求异面直线距离的关键.  相似文献   

4.
对于求异面直线间的距离,学生往往感到比较棘手。本文拟利用代数中求极值的方法解决这一问题。它的想法是:两条异面直线的公垂线在这两条异面直线间的线段,是分别在这两条直线上各取一点所连结的线段中最短的一条。例1.正方形 ABCD-A_1B_1C_1D_1的棱长为 a,  相似文献   

5.
对于异面直线间的距离问题,在有些情况下,公垂线段难以确定,这时可运用化归思想对问题进行适当转化. 人教版全日制普通高级中学教科书(必修)数学第二册(下B)的第56页第4题:已知正方体ABCD-A'B'C'D'的棱长为1,求直线DA'与AC的距离.  相似文献   

6.
高中数学人教版教材(第二册下B)P51第4 题:已知正方体ABCD-A'B'C'D'的棱长为1, 求直线DA'与AC的距离. 此题是异面直线的距离问题:可作出异面直线的公垂线. 解法1:如图1连结A'C',则AC∥面A'C' D',  相似文献   

7.
定义1在平面内,到线段两端距离相等的点的轨迹是一条直线,我们把它叫做这条线段的垂直平分线,即中垂线.定义2在空间中,到线段两端距离相等的点的轨迹是一个平面,我们把它叫做这条线段的垂直平分面,即中垂面.下面我们来看看它们的一些应用.一、求平面个数例1到三棱锥的四个顶点距离相等的平面有几分个?析:以平面两侧点的个数来分类.如图1,设AA1⊥面BCD于点A1,线段AA1的中垂面为α,则α上各点到A、B、C、D四点距离相等.如图2,设EF是异面直线AB、CD的公垂线段,线段EF的中垂面为β,EF⊥AB、EF⊥CD、EF⊥β,所以平面β到A、B、C、D…  相似文献   

8.
空间七大距离:点点、点面、点线、线线、线面、面面距离是高中数学的一个难点,它们之间既有区别又相互联系,而两异面直线的距离又是难点中的难点.其难就在于两异面直线的公垂线需满足:①和两异面直线都垂直;②和两异面直线都相交.因此,若能突破求异面直线距离这个难点,其它距离问题便可迎刃而解.新教材全日制普通高级中学教科书(试验修订本·必修)数学第二册(下B)51页第4题:已知正方体A BCD-A'B'C'D'的棱长为1,求直线DA'与A C的距离.这道题以学生熟悉的正方体为背景,考察两异面直线距离的求法,是培养学生探究能力发散思维的好材料,也…  相似文献   

9.
我们知道,与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,而在这两条异面直线间的公垂线段的长度叫做这两条异面直线的距离.求两条异面直线的距离是立体几何的难点之一.主要难在学生不会灵活运用所学的知识找出两条异面直线的公垂线段或将所求的问题进行转化.下面针对这两个难点谈谈求两条异面直线距离的常用方法.一、定义法其思路是在已知图形中找出与两条异面直线都垂直且相交的直线,然后再求出公垂线段的长.例1如图1,已知长方体ABCD-A1B1C1D1的长和宽都是4cm,高是2cm.求异面直线AD和BC1的距离.分析:由ABCD-A1B1C1…  相似文献   

10.
异面直线间距的计算,是立体几何教学中的一个难点。为了突破难点,根据《考试说明》的规定:“对于异面直线的距离,只要求会计算已给出公垂线时的距离。”笔者就此总结了如下几种常用方法,供参考。一、直接法1、定义法。根据定义,结合条件直接找出公垂线,在相应的平面内求出异面直线间的距离(此法常用于两异面直线互相垂直时的情形)。例1.已知正三棱锥V—ABC的边长为a,求VA与BC间的距离。略解:在正三棱锥&,相对棱互相垂直,(正三校雄性质),取BC中点E,连AE、VE,易得BC上平面VAE,在平面VAE中,过E作EF上VA,则E…  相似文献   

11.
在高中立体几何中,如何求两条异面直线间的距离是一个较难的问题,其难就难在某些题目中的异面直线的公垂线不容易直接作出,特别是结合在某些几何体中求各种位置的异面直线间的距离,更感到无从下手了。本文以正方体为例,介绍求解异面直线间的距离的五种基本方法,希望能起到举一反三、触类旁通,有所启迪的作用。一定义法所谓定义法,就是直接作出两异面直线的公垂线,然后根据条件求此公垂线段的长。一般来说,当两异面直线互相垂直时或其中一条直线垂直于过另一直线的平面时,用定义法直接作出其公垂线段进行求解较为快捷方便。  相似文献   

12.
例1已知正方形ABCD-A1B1C1D1的棱长为1,求直线DA1与AC的距离.一、定义法利用异面直线距离的定义,作(找)出公垂线段并求其长度.解法1:如图1,易证BD1⊥AC,BD1⊥DA1,设DD1的中点为E,BD交AC于O,则OE∥BD1,连接AE交DA1于M,作MN∥OE交AC于N,则MN∥BD1,则MN为AC与DA1的公垂线段.如图2,  相似文献   

13.
求异面直线的距离,是立体几何教学中的一个难点。常见教材和资料对此介绍得不多,常用的方法是把问题转化为求直线与平面或平面与平面间的距离。下面试举数例。例1.长方体ABCD-A′B′C′D′的相邻三条棱长分别为3、4、5,求它的对角线与不相邻棱之间的距离。  相似文献   

14.
利用平面的法向量几乎可以解决所有的立体几何计算问题,尤其在求线线距离和点面间距离时,法向量有着它独有的优势——不用作图而直接计算.本文举例说明法向量在求空  相似文献   

15.
在1982年第四期上刊登了李梦樵同志的“已知四面体各棱的长求它的体积的方法”一文,介绍了由四面体各棱长求其体积的一种方法。这里,我再介绍一种方法,供读者参考。予备题一、已知两条异面直线a、b所成的角为θ,它们的公垂线段AA′的长度为d,在直线a、b上分别取两点E、F,设|A′E|=m,|AF|=n。则 |EF|=(d~2+m~2+n~2-2mncosθ)~(1/2)(E、F在AA′同侧) 证明请参阅通用教材高中课本第二册第35页。若|EF|=x,则上式可表示为 cosθ=(d~2+m~2+n~2-x~2)/2mn 予备题二、已知任意四边形ABCD的四边长分别为a、b、c、d,对角线AC的长为e。求顶点B、D到对角线AC的距离及两垂足问距离。  相似文献   

16.
最值问题是简单多面体中的重要题型,解这类题时不仅要熟练掌握多面体的有关知识,而且还需灵活应用求最值的各种方法.现把方法归纳、总结如下,供同学们复习时参考.一、配方法例1在棱长为a的正方体ABCD-A1B1C1D1中,求A1B与B1D1的距离.求异面直线间的距离,本身就是一种最值问题,它  相似文献   

17.
求异面直线间距离是《立体几何》中的难点之一 .笔者在教学过程中发现 ,学生在用定义能直接找出异面直线公垂线段时 ,求其长基本上不存在问题 .但在不易找出异面直线公垂线段时 ,而要求其长往往存在一定的困难 .这时 ,若能用等积法去求异面直线间距离则是行之有效的解决办法之一 .用等积法求异面直线间距离的方法如下 :若a、b是两条异面直线 ,设法找出过b而与a平行的平面α ,则a、b间距离就是直线a到平面α的距离 ,也就是直线a上一点O到平面α的距离 .此时 ,利用三棱锥换底而体积不变的做法 ,即可达到求点Ο到平面α的距离的目的 .…  相似文献   

18.
求异面直线所成的角,过去通常都是转化为平面角去求,但是若利用空间向量内积去求,则不须降维转化也很简单.本文结合往届高考试题加以说明. 例1 在棱长为1的正方形ABCD-AEBEC1D1中,M、N分别为A1B1和BB1的中点,求AM与  相似文献   

19.
距离是数学中常用的概念,中学数学中的求距离问题,不外乎是指点与点、点与线、点与面、线与线、线与面、面与面之间的距离.在这许多求距离的问题中,以求两异面直线间的距离的情况较为复杂,是立几教学中的难点.而教材对这个问题的处理也是比较原则性的.首先提出两异面直线间的公垂线段与距离的概念,然后作一些简单的应用举例.(在这一阶段,学生并不感到困难),随着教学内容的不断深入,不时的出现一些求两异面直线间距离的问题,时易时难,但始终不作一个了断.学生最多也只能解决一些具体的题目,至于解题的一般方法,教材中没有说明,本文打算就此作一些探索,设法找到一般方法,从而化解难点.  相似文献   

20.
(17)解:(1)取G为DD_1的中点,连结GF,EF,易证GEF∥ABCD, 则DD_1⊥CFE,CC_1⊥GFE,即EF⊥CC_1, 易证等腰三角形ED_1B,EF为底边上的中线,则EF⊥BD_1,故EF为BD_1与CC_1的公垂线; (2)点到面的距离化为线到面的距离,再化为特殊的点到面的距离,直作高。化为上底面中心O_1到面BDE的距离,经过O_1的面MCC_1O_1⊥BDE,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号