首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
勾股定理及其逆定理是平面几何中的重要定理,其应用非常广泛.我们在应用这两个定理解题时,常常会出现错解,现将错误归纳剖析如下,以引起我们的重视.一、忽视题目中的隐含条件例1在Rt△ABC中,a、b、c分别为三条边,∠B=90°,如果a=3cm,b=4cm,求边c的长.误解:∵△ABC是直角三角形,∴a2+b2=c2,即32+42=c2,解得c=5(cm).剖析:上面的解法,忽视了题目中∠B=90°,b是斜边的隐含条件.正解:∵∠B=90°,∴a2+c2=b2,c=b2-a2!=42-32!=!7(cm).二、忽视定理成立的条件例2在边长都是整数的△ABC中,AB>AC,如果AC=4cm,BC=3cm,求AB的长.误解:由“勾3股…  相似文献   

2.
同学们在运用勾股定理及其逆定理解题时常常出现这样那样的错误 .本文拟对相关错解作出分析 ,以提高同学们对这两个互逆定理的认识与运用 .  一、未注意确定斜边    例 1 在△ABC中 ,∠A =90°,a ,b,c是∠A、∠B、∠C的对边 ,且a=8,b=6,求c.错解 由勾股定理 ,得c2 =a2 +b2 =82 + 62 =1 0 0 ,故c=1 0 .剖析 在直角三角形中运用勾股定理时 ,首先应弄清哪个角是直角 ,从而判断哪条边是斜边 .上述错解错在死搬硬套勾股定理表达式“c2 =a2 +b2 ”上 .其实 ,由∠A=90°可知a应是斜边 ,由勾股定理应得a2 =b2 +c2 ,故c2 =a2 -b2 =82 -62…  相似文献   

3.
勾股定理是欧几里得几何中的重要定理之一,国外称之为毕达哥拉斯定理.它主要揭示直角三角形三边之间的度量关系,其主要内容是:在△ABC中,若∠C=90°,则a2+b2=c2;反之,若a2+b2=c2,则∠C=90°.  相似文献   

4.
设K的妙用     
在解有“比”的习题时 ,设 K可以使含“比”的项用 K的代数式表示 ,有利于思路的展开 ,达到顺利解题的目的。例 1 .在△ ABC中 ,已知∠ A∶∠ B∶∠ C=1∶ 2∶ 3,求 a∶ b∶ c。略解 :设∠ A=K,则∠ B=2 K,∠C=3K,由∠ A ∠B ∠ C=1 80°,得∠ A=30°、∠ B=60°、∠C=90°。设 a=K′,则 c=2 K′。∴b=3 K′,∴ a∶ b∶ c=K′∶ 3K′∶ 2 K′=1∶ 3∶ 2。  例 2 .如图 ,在△ ABC中 ,∠ ACB =90°,CD⊥ AB,若 AC=6,sin B=35。求 CD。略解 :由∠ACB=90°,CD⊥AB易得∠ B=∠ ACD。∵ sin B=35,∴ sin∠ ACD=ADAC=35…  相似文献   

5.
用勾股定理解有关问题时要注意什么呢? 一、要注意定理的正确运用例1 在△ABC中,∠A=90°a、b、c分别是∠A、∠B、∠C的对边,a=4,b=3.求c.  相似文献   

6.
错在哪里     
题 在△ABC中 ,∠A =80° ,a2 =b(b +c) ,求∠B。解 在△ABC中 ,cosB =a2 +c2 -b22ac =c2 +bc2ac =c +b2a ,所以b +c=2acosB ,故a2 =b(b+c) =b·2acosB ,a =2bcosB ,即sinA =2sinB·cosB =sin2B。考虑到∠A的值及 2∠B的范围 ,可得 :∠A =2∠B或∠A +2∠B =1 80°,故∠B =40°或∠B =5 0°。解答错了 !错在哪里 ?我们检验一下 ,当∠B =5 0°时 ,∠C =5 0° ,可得b =c。故a2 =b(b +c) =b2 +c2 ,此三角形应为直角三角形 ,且∠A应等于 90°,与已知条件矛盾。问题出在哪里呢 ?实际上由b +c =2acosB到a =2bcosB为同一条件叠代 ,是…  相似文献   

7.
已知a、b、c是△ABC的三条边,如果∠C=90°,那么a~2+b~2=c~2, (1)如果∠C≠90°,那么a~2=b~2+c~2-2bccosA, (2)由正弦定理, a=2RsinA,b=2RsinB,c=2RsinC分别代入(1),(2)可得 sin~2A+sin~2B=sin~2C, (3) sin~2A=sin~2B+sin~2C-2sinBsinCcosA。(4) 上面(1),(2)是我们熟知的勾股定理和余弦定理,而(3),(4)是由正弦定理推导出来的含角(不含边)的关系式,类似勾股定理和余弦定理(实际上是和勾股定理、余弦定理等价)的形式,不妨称之为“角形式的勾股定理和余弦定理”。应用这两个定理,可使某些数  相似文献   

8.
一、忽视直角三角形致错例1 在△ABC中,∠A,∠B,∠C的对边为a,b,c,且a:b:c=3:4:5,求证:sinA+sinB=7/5。错解:证明:设a=3k,b=4k,c=5k,则分析本题中没有说明∠C=90°,而直接应用正弦、余弦函数的定义错误的,应先证明△ABC为直角三角形,且∠C=90°后才能用事定义。  相似文献   

9.
运用勾股定理解题应注意哪些问题呢?一、正确识别直角边和斜边例1 在△ABC中,∠A=90°,∠A、∠B、∠C的对边分别为a、b、c,且a=4,b=3。求c的长. 错解:由题意可知,△ABC为直角三角形. 由勾股定理可得c2=a2 b2=42 32=25.所以c=5. 剖析:在直角三角形中运用勾股定理时,首先要弄清楚哪个角是直角,从而确定哪条边是斜边,这样才能写出正确的勾股定理表达式.上述  相似文献   

10.
三角形的内角和定理及推论有着广泛的应用,现归类举例说明. 一、求角度的大小例1 在△ABC中,若∠A:∠B:∠C=1:2:3,则∠C= ——. 分析与解:依题意,不妨设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理知x+2x+3x=180°,即x=30°,故∠C=3°=90°. 例2 如图1,∠α=125°,∠1=50°,则∠β的度数是——. 分析:易求得∠2=55°,由推论2知∠β=∠1+∠2=50°+55°-105°  相似文献   

11.
1.(59a+b)cm. 提示:环套环拉直时,两环间距为acm(见原题图),第 一个与最后一个环各有一个边缘长b-a2cm.因此,60个环长为60a+b-a2× 2=59a+b(cm). 2.120. 提示:如图1,因为△ABC的三边相等,所以它 的三个内角都是60°.故在△ACD与△CBE中,因为AD=CE,∠CAD=∠BCE =60°,AC=CB,所以△ACD≌△CBE(SAS).所以∠3=∠1.因为∠3+∠2= 60°,所以∠1+∠2=60°.所以∠BFC=180°-60°=120°. 图1        图2        图3 3.提示:如图2,以ME为轴,将△DME翻折至另一侧,得△EMF,因为 ∠DME=90°,故点D,M,F共线,连…  相似文献   

12.
文[1]介绍了关于三角形边角关系的两个结论.实际上,在三角形中还有命题1设a,b,c为△ABC的三边长,当an,bn,cn(n∈N*)成等比数列时,∠B≤60°.证明因为a,b,c为△ABC的三边长且an,bn,cn(n∈N*)成等比数列.所以b2n=ancn,即b2=ac.由cosB=a2+2ca2c-b2=a2+2ca2c-ac≥21,得∠B≤60°.命题2设a,b,c为△ABC的三边长,当a1n,b1n,c1n(n∈N*)成等比数列时,∠B≤60°.证明因为a,b,c为△ABC的三边长且a1n,b1n,c1n成等比数列,所以(b1n)2=a1n·c1n.即b12=a1c,即b2=ac.由cosB=a2+2ca2c-b2=a2+2ca2c-ac≥21,得∠B≤60°.由命题1和命题2得定理设a,b,c为…  相似文献   

13.
定理设△ABC的三个内角A、B、C的对边分别是a、b、c,则b~2=a~2+ac的充要条件是∠B=2∠A. 这是一道脍炙人口的名题,通常被人们视为平几中一题多解的典范,而往往忽视了它的潜在功能.本文就其应用介绍如下: 一、解三角形例1 若△ABC的三边长为连续整数,且最大角∠B是最小角∠A的两倍,求三角形的三边长. (第10届IMO试题) 解:设AB=X,则AC=I十1,M=I—l,由定理得 (。+1)2一k-])’+k-1),化简整理得X’-SX一0, ∴\X=0(舍去)或X一5.故 AB=5.M=4,AC=6. 例2 在△ABC中,角A、B、C的对边分别为a、b、c,若角A、B、C的大小成等比数列且b~2-a~2=ac,则  相似文献   

14.
绝妙解法     
题目求 sin~210°+cos~240°+sin10°cos40°的值.解△ABC 中,由余弦定理和正弦定理,有a~2=b~2+c~2-2bccosA, (1)(a/(sina))=(b/(sinB))=(c/(sinC))=k (2)由 a=ksinA,b=ksinB,c=ksinC 代入(1)得sin~2A=sin~2B+sin~2C-2sinBsinC·cosA. (3)  相似文献   

15.
中线线定理的表述是:设△ABC的三边AB=c,BC=a,AC=b,BC边上的中线长为ma,则ma2=1/2b2+1/2c2-1/4a2. 中线长定理有广泛的应用,下面举例说明. 例1 如图1,在△ABC中,∠BAC=90°,MN是BC边上的点,且BM=MN=NC,如果AM=4,AN=3,则MN=____. 解设AC=b,AB=c,BM=MN=NC=a,AM,AN分别是△ABN和△ACM的中线,则有42=1/2c2+1/2·32-1/4(2a)2, 32=1/2b2+1/2·42-1/4(2a)2,  相似文献   

16.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

17.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

18.
有些几何题 ,若能仔细观察、把握特征、抓住本质、恰当地构造直角三角形进行转化 ,就会收到化难为易、事半功倍的效果 .1 求边长例 1、如图 1所示 ,在△ABC中 ,AB=4 ,BC=3 ,∠ABC=1 2 0°,求 AC的长 .解 :经过 A作 CB延长线的垂线 ,垂足为 E.因为∠ABC=1 2 0°,故∠ ABE=60°.在 Rt△ ABE中 ,AE=AB· sin60°=4× 3 /2=2 3 ,BE=AB· cos60°=4× 1 /2 =2 .在 Rt△ACE中 ,AC=AE2 CE2=( 2 3 ) 2 52 =3 7.2 求角例 2 如图 2所示 ,在△ ABC中 ,AB=4 ,AC=2 1 ,BC=5,求∠ B的度数 .解 :作 AD⊥ BC于 D.设 BD=x,则 D…  相似文献   

19.
直角三角形的直角边a、b的平方和等于斜边c的平方,即a2+b2=c2,这就是我们熟知的勾股定理,它揭示了直角三角形三边之间的数量关系.灵活巧用它,可使几何问题的解决变得简捷.例1如图1,已知AB⊥CD,△ABD、△BCE都是等腰直角三角形,CD=8,BE=3,则AC的长为()A.8B.5C.3D.&!34(2004年湖北省初中数学竞赛试题)解:依题意,AB=DB,BC=BE.∵BE=3,CD=8,∴BC=3,DB=5,AB=5,∵∠ABC=90°,∴AB2+BC2=AC2∴AC=!AB2+BC2&=&!34.例2如图2,AC=10,BC=17,CD⊥AB于点D,CD=8,求△ABC的面积.(2002年北京市初二数学竞赛试题)解:在△ABC中,∵CD…  相似文献   

20.
正弦定理和余弦定理是解斜三角和判定三角类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.在近年高考中主要有以下五大命题热点:一、求解斜三角形中的基本元素是指已知两边一角(或二角一边或三边),求其他三个元素问题.【例1】在△ABC中,a、b、c分别是∠A、∠B、∠C所对的边.若∠A=105°,∠B=45,b=22,则c=.解:由正弦定理,得sinbB=sincC,即si2n425°=sinc30°,解得c=2.【例2】在△ABC中,sinA∶sinB∶sinC=2∶3∶4,则∠ABC=(结果用反三角函数值表示).解:由已知及正弦定理,可得a∶b∶c=2∶3∶4,则a=2k,b…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号