首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在证明四条线段成比例时,我们常常会遇到要证明的四条线段在同一直线上的特殊情形.此时,由于在同一直线上找不到平行或相似三角形,这给证题带来一定的困难.代换法是解决这类问题的行之有效的方法.下面举例说明:一、用等线段代换一般证题思路:要证a:b=c:d,可先证a:b=c:x,再证x=d即可.例1 如图1,在△ABC中,AB=AC,G是中线AD上的一点,过点C作CF∥AB,连结BG延长并分别交AC、CF于点E、F.求证:BG:GE=GF:BG.证明: 连结GC,∵AD是等腰△ABC的底边BC上的中线,∴BG=CG,∠GBC=∠GCB.又∵∠ABC=∠ACB,∴∠ABF=∠ECG.∵CF∥AB…  相似文献   

2.
课本上的习题,大多具有典型性和代表性,善于探究,能一题多解和一题多变,对同学们培养发散性思维和创造性思维大有裨益,现举例说明。例在△ABC中(AB>AC)的边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P,求证:BP∶CP=BD∶CD(九年义务教育初中《几何》第二册第255页16题)。一、探索证法,培养发散性思维全方位、多角度,寻求问题的解决途径,是培养发散性思维的有利方法。图1证法一:如图1,过C作CF∥AB交PD于F,则BP∶CP=BD∶CF、且∠1=∠4∵AD=AE∴∠1=∠2∴∠2=∠4又∵∠2=∠3∴∠3=∠4∴BP∶CP=BD∶CE…  相似文献   

3.
例 1 .求证等腰三角形底边上任意一点与两腰的距离和等于腰上的高。已知 :△ ABC中 ,AB=AC,P为 BC上任意一点 ,PE⊥ AB,PF⊥ AC,CD⊥ AB。如图 1。求证 :PE PF=CD。证明 :过 P点作 PM⊥ CD,∵ PE⊥ AB,CD⊥ AB,∴四边形 PMDE是矩形 ,∴PE=DM。∵PM⊥ CD,CD⊥AB,∴AB∥PM,∴∠ B=∠ MPC。∵AB=AC,∴∠ B=∠ ACB,∴∠ MPC=∠ ACB。在△ MPC和△ FCP中 , ∠ PMC=∠ CFP, ∠ MPC=∠ ACB,  PC=CP,∴△ MPC≌△ FCP,∴PF=CM,∴CD=DM CM=PE PF。反思 1 .此题条件等腰三角形可变为等边三角形。…  相似文献   

4.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

5.
在△ ABC中 ,∠ C=90°,CD⊥ AB于 D,AM是∠ BAC的平分线 ,交 CD于 E,交 BC于 M,过E作 EF∥ AB交 BC于 F。求证 :CM=BF。证法一 :(运用三角形知识 )证明 :过 M作 MN⊥ AB于点 N。∵∠ 1=∠ 2 ,易证△ ACM≌△ ANM,∴CM=MN。  ( 1)又 CD⊥ ABMN⊥ AB CD∥ MN, ∠ 3=∠ 5∠ 4 =∠ 5 ∠ 3=∠ 4 CE=CM。  ( 2 )由 ( 1)、( 2 )得 CE=MN。在 Rt△ EFC和 Rt△ NBM中 ,EF∥ AB ∠ B=∠ CFE,∠ CEF=∠ MNB,CE=MN Rt△ EFC≌ Rt△ NBM,∴ CF=BM,∴ CM=BF。  证法二 :(运用四边形知识 )证明 :过 M…  相似文献   

6.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

7.
在数学习题教学过程中,要引导学生对一些题目用不同的思想方法,从不同的思维角度去寻找多种解法,不仅有助于培养学生灵活运用知识的能力,而且也有助于对他们发散思维的训练和创新能力的培养.例:已知AD是△ABC的角平分线,求证:BDDC=ABAC.证法一:如图1,过D作DE∥AB,交AC于E,则BDDC=AEEC.由∠1=∠2,∠1=∠3,得∠2=∠3,∴AE=DE,故AEEC=DEEC,又DEEC=ABAC,∴BDDC=ABAC.证法二:如图2,过D作DE∥AC,交AB于E,则BDDC=BEAE.由∠1=∠2,∠2=∠3,得∠1=∠3,∴DE=AE,故BEAE=BEDE,又BEDE=ABAC,∴BDDC=ABAC.证法三:如图3,过C点作CE∥AD,交BA的延长线于E,则BDDC=ABAE.由∠1=∠2,∠2=∠3,∠1=∠E,得∠3=∠E,故AE=AC,∴BDDC=ABAC.证法四:如图4,过B点作BE∥AD,交CA的延长线于E,则BDDC=AEAC.由∠1=∠2,∠1=∠3,∠2=∠E,得∠3=∠E,故AE=AB,∴BDDC=ABAC.证法五:如图5,过B点作BE∥AC,交AD的延长线于E,则BDDC=BEAC...  相似文献   

8.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

9.
证明几何题时遇到求证两条线段的和等于另一条线段的问题,常采用的两种方法:①合成法:即将短的两条线段A+B合成一条线段D,然后证明D=C成立;②分解法:即将C分解为两条线段D和E,C=D+E,使A=D,然后证明B=E成立,即化归为证明两条线段相等的问题.举例如下:例1如图:在等腰三角形ABC中,底边BC上有任意一点P,过P作PD⊥AB于D,PE⊥AC于E,过C作CF⊥AB于F.求证:PD+PE=CF郾证法1(合成法):过C作CM垂直于DP的延长线于M,∠M=90°郾∵PD⊥AB,CF⊥AB,∴四边形DMCF是矩形郾∴AB∥CM,CF=BM=DP+PM郾∵AB=AC,∴∠B=∠ACB.∵∠B=…  相似文献   

10.
平行四边形有许多重要的性质 ,灵活地应用这些性质 ,可以解决许多问题。因此 ,解题时应根据题目的特征 ,巧妙地将原图形进行加工 ,使之构成平行四边形 ,从而打开解题的思路。下面举例说明。例 1 .如图 1 ,在△ ABC中 ,AB= AC,在 AB上取D点 ,在 AC延长线上取 E点 ,使CE=DB,连结 DE交 BC于 G点 ,求证 :DG=GE。分析 :过 D点作 DF∥ AE,连结 CD、FE,得到四边形 DFEC,若四边形 DFEC为平行四边形 ,则命题得证。从 DF∥ AE,知∠ACB=∠ DFB,∵∠ B=∠ ACB,∴∠B=∠DFB,∴ DB=DF,再由已知 DB= CE,推知 DF=CE,∴四边形 …  相似文献   

11.
一些几何问题中常常出现有关角平分线的条件 ,能否恰当利用角平分线巧作辅助线 ,往往成为解题的关键 .下面举例说明如何利用角平分线作辅助线 .一、过角平分线上的一点作一边的平行线构造等腰三角形 .例 1 如图 1 ,在 ABC中 ,∠B、∠C的平分线交于I ,过I点平行于BC的直线分别交AB、AC于D和E .求证 :DE =BD +EC .证明 ∵BI平分∠ABC ,∴∠ABI=∠IBC .又∵DE∥BC ,∴∠DIB =∠IBC ,∴∠DBI =∠DIB ,∴DI=DB .同理 :EI=EC ,∴DE =DB+EC .评注 本题根据角平分线的定义 ,过其上一点作角的一边的平行线 ,则又根据平…  相似文献   

12.
中考题材中有关证明“成比例线段”的问题很多,本文就1994年湖北省一道中考题的多种证法作一介绍,这是一道一题多证的好题。 题 从以AB为直径的半圆上一点C引CD⊥AB,垂足为D,在AB上取一点E,从D引CE的垂线和BC相交于F。 求证:AD/DE=CF/FB . 证法1 如图,过 C作CP∥FD交BA延长线于P,CF/FB=PD/DB.连AC,∵AB  相似文献   

13.
几何课本中有这样一道题:在△ABC(AB>AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证BP:CP=BD:CE.(提示:经过点C作AB的平行线CF交DP于F点)  相似文献   

14.
一、利用全等三角形的性质证明例1 已知:如图1,D、E在线段BC上,AD=AE,BD=CE.求证:∠B=∠C.证明:∵AD=AE,∴∠1=∠2,∴∠ADB=∠AEC在△ABD和△ACE中,BD=CE,∠ADB=∠AEC,AD=AE,∴△ABD≌△ACE(SAS).∴∠B=∠C.  相似文献   

15.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

16.
本文现将一初中数学竞赛试题“已知AD是△ABC的中线,E是AD上的一点,CE交AB于F,且AEBD=14,则AFFB=?”的8种解法及其推广应用介绍如下,供参考。一、解法解1:如图1,过中点D作DG∥CF交AB于G,则G也是FB的中点,∴FG=12FB,∴AEBD=AFFG=2AFFB,∵AEBD=14,∴AFFB=18。解2:如图2,过中点D作DG∥AB交CF于G,则DG是△CFB的中位线,∴DG=12FB。而△AFE∽△DGE,∴AFDG=AEBD,∴2AFFB=14,故AFFB=18。解3:如图3,过B点作CEF的平行线交AD的延长线于G,∴AFFB=AEEG。而△CDE≌△BDG(角角边),∴EBD=DG,故EG=ED+DG=…  相似文献   

17.
三角形内角和定理:三角形的三个内角之和等于180°.学习这个定理要注意以下几个问题. 一、学会定理证明课本上已给出证明.此外,利用平行线和平角知识还可得到下列证法. 证法一如图1,在三角形的任一边上任取一点,如在AC边上取点D, 过点D作DE∥CB交AB于点E,又作DF∥AB交BC于点F.则∠C=  相似文献   

18.
在进行有关梯形的边、角、面积等计算和论证问题时,常常需要添加辅助线,将梯形问题转化为三角形、平行四边形、矩形等特殊图形问题.下面介绍六种常见辅助线的添加方法.1平移一腰过梯形的一个顶点作一腰的平行线,通过平移腰,将梯形转化为三角形和平行四边形,利用三角形和平行四边形的性质,并结合题目条件,达到计算或证明的目的.图1例1如图1,在梯形ABCD中,AB∥CD,∠ADC=2∠B,AD=a,CD=b,求AB的长.解过D作DE∥BC,交AB与点E,则∠DEA=∠B,四边形DEBC是平行四边形,故BE=CD=b,∠EDC=∠B,由∠ADC=2∠B,得∠ADE=∠AED,因而AE=AD=a,所以AB=AE+BE=a+b.2平移两腰过梯形的上底上的一点作两腰的平行线,将梯形转化为一个三角形和两个平行四边形,再利用三角形和平行四边形的性质,结合题目条件,来证明(或计算).图2例2如图2,在梯形ABCD中,AD∥BC,M、N分别为上、下底的中点,且∠B+∠C=90°.求证:MN=12(BC-AD).证明过点M作ME∥AB交BC于点E,作MF∥CD交BC于点F,则∠MEC=∠B,∠MFB=∠C,∵∠B+∠C=90°,∴∠MEC+∠...  相似文献   

19.
1.70°,110°.2.矩形,正方形.3.20cm,24cm2.4.4cm,(4+43)cm.5.112.5°.6.①②③.7.22-2.8.50°,130°.9.C.10.B.11.C.12.D.13.D.14.C.15.B.16.C.17.(1)连结AC,∵O是对角线AC的中点,OA=OC,∵∠EAO=∠FCO,∠AOE=∠COF,∴△AOE≌△COF,∴AE=CF.(2)结论仍然成立,△AOE≌△COF,∴AE=CF.18.∵AE∥FC,∴∠EAC=∠FCA.又∵∠AOE=COF,AO=CO,∴△AOE≌△COF,∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线,AF=AE,CF=CE.∵EA=EC,∴AF=AE=CE=CF,∴四边形AFCE为菱形.19.(1)AE=CF(或OE=OF;DE⊥AC;BF⊥AC;DE∥…  相似文献   

20.
每期一题     
题:等腰Rt△ABC中。在直角边AB上取一点M,使AM=2/3AB,在另一直角边上取一点N,使AN=1/3AC。求证:∠AMN=∠CBN。 1 利用相似三角形证一如图1,作NP⊥BC于P。因∠C=45°,∴ NP=PC=1/2(2)~(1/2)NC=1/3~2(1/2)AC=1/3BC, BN=2/3BC,∴NP/BP=1/2=AN/AM,又∠A=∠BPN=90°,∴△AMN∽△PBN,∴∠AMN=∠CBN。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号