首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在三角函数教学中我们引进了单位圆,这对于直观表示任意角的三角函数,描绘三角函数图象,研究三角函数的有关性质及推导三角公式等提供了极大的方便.其实,单位圆在解题中,尤其在利用单位圆构造条件可化数为形的解题中,有着独特的功能.现举例如下:例1已知sin4αcos2β csions24αβ=1,求证:cos4βsin2α csions42αβ=1.证明设点A为scoins2αβ,csoins2βα,点B为(cosβ,sinβ),则A,B均在单位圆上.过B点圆的切线L的方程为xcosβ ysinβ=1,显然A点在L上,则A,B两点重合(切点唯一).∴scions2αβ=cosβ,csoins2βα=sinβ,即sin2α=cos2β,co…  相似文献   

2.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

3.
对于一些具有特征的三角问题,我们可以通过构造随圆模型来求解或证明,现分类举例说明如下:【例1】已知ccooss42BA+ssiinn42BA=1,求证ccooss24BA+ssiinn42AB=1.分析:这是一道纯碎的三角命题,由题中等式的形状可联想到构造一个椭圆方程.证明:设椭圆C:cosx22B+siny22B=1.由题设知点M(cos2A,sin2A)在椭圆C上,又N(cos2B,sin2B)也满足椭圆C,可知点N也在椭圆上,过点N的椭圆C的切线方程为xcos2Bcos2B+yssiinn22BB=1,即x+y=1,又点M也满足x+y=1,所以点M也在此切线上,故点M和点N重合,cos2A=cos2B,sin2B=sin2A,所以cos4Bcos2A+ssiinn24B…  相似文献   

4.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )= 1 ,那么 x+ y=0 .文 [1 ]给出了此题的一种证法 ,本文再给出此题的两种换元证法 ,然后给出一个新命题 .证法 1 设 x=tanα,y=tanβ,其中 α,β∈ ( - π2 ,π2 ) ,则由条件知 ,( tanα+ secα) ( tanβ+ secβ) =1 ( sinα+ 1 ) ( sinβ+ 1 ) =cosαcosβ sinα+sinβ+ 1 =cos(α+β) 2 sinα+β2 cosα-β2 +1 =1 - 2 sin2 α+β2 sin α+β2 ( sin α+β2 +sinπ-α+β2 ) =0 sin α+β2 sin 2β+π4 ·cos2α-π4 =0 .又由 α,β∈ ( - π2 ,π2 ) ,知…  相似文献   

5.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

6.
三角问题几何来处理,这样做能加强知 识之间横向联系,有利于培养学生类比思维 能力,提高学生创新能力. 关于sinα+sinβ=2sinα+β2cosα-β2, cosα+cosβ=2cosα+β2cosα-β2的证明. 在直角坐标系中,把α、β顶点放在原点, 始边与x轴非负半轴重合,α、β终边与单位 圆分别交于A、B两点,所以A(cosα,sinα)、 B(cosβ,sinβ),取点M(1,0),记AB中点为 P,过P作x轴垂线,垂足为E,由中点坐标公 式得sinα+sinβ=2ypcosα+cosβ=2xp 当α、β∈[0,2π]时,∴0≤|α-β|≤ 2π. 1.若|α-β|=0,π、2π时和差化积公 式转化为诱…  相似文献   

7.
如果xR,那么|sinx|≤1,|cosx|≤1,这是三角函数中一个应用广泛的重要性质,恰当运用可以使解题过程简捷流畅;反之,忽视正、余弦函数的有界性这一隐含条件,则使同学们在解题过程中经常出现错误.下面结合实例介绍它的解题功能.一、求角度例1已知6sin3β-cos22α=6,求α,β.解原方程变形为6(sin3β-1)=cos22α,则有6×(sin3β-1)≥0,即sin3β≥1.∵|sin3β|≤1,∴sin3β=1,3β=2kπ+π2,即β=23kπ+π6(kZ).此时cos2α=0,2α=kπ+π2,即α=12kπ+π4(kZ).评注等式中含有两个未知数,如果不从正弦函数的有界性中挖掘出隐含条件寻找…  相似文献   

8.
在直角坐标系xoy中,各象限的角平分线连同轴、y轴共八条射线,它们把直角坐标系分成八个区域,在各射线上标上相应的sinα+cosα的值,就可以很方便地判断出α的范围。如上图建立坐标系,设sinα+cosα=x,且α∈〔02π〕,A(1,1).〔结论1〕若1相似文献   

9.
一、求角的范围例1若sinθ cosθ >0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限解∵sinθcosθ>0,∴sinθcosθsin2θ+cos2θ>0,∴tanθtan2θ+1>0,∴tanθ >0.选B.二、求值例2已知tan(π4+α)=2,求12sinαcosα+cos2α的值.解∵tan(α +π 4)=2,∴1+tanα1-tanα =2,tanα=1 3.∴ 12sinα cosα +cos2α=sin2α +cos2α2sinα cosα +cos2α=tan2α +12tanα +1=2 3.例3已知6sin2α+sinαcosα-2cos2α=0,α 缀[π2,π],求sin(2α+π3)的值.解显然cosα≠0,∴原条件可化为6tan2α+tanα-2=0,解得tanα=-2…  相似文献   

10.
一个新发现的三角不等式   总被引:2,自引:2,他引:0  
苏张延卫、陕西苟春鹏两位老师分别证明 3以下三角不等式 :在△ ABC中 ,有sin A 2 sin B2 3sin C3≤ 3,(1)cos A 2 cos B2 3cos C3≤ 3 3 . (2 )受文 [1]的启发 ,本文作者证得一个类似的新结果 :cot A 2 cot B2 3cot C3≥ 6 3. (3)其实 ,我们有下述定理 在△ABC中 ,对 k≥ 1有cot Ak 2 cot B2 k 3cot C3k≥ 6 cotπ6 k,(4 )等号成立当且仅当 A=π6 ,B=π3.证明 若 x>0 ,y>,且 x y<π,则cotx coty=sin(x y)sinxsiny=2 sin(x y)cos(x- y) - cos(x y)≥ 2 sin(x y)1- cos(x y) =2 cotx y2 .∴cot AR 2 cot B2 …  相似文献   

11.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

12.
证法 1 如图1,设∠BAD=α,∠ CAD=β(0 <α,β <π2 ) ,过 B作BD⊥ AD交 AC于C,则有cosα=ADAB,cosβ=ADAC.又∵S△ B A C=S△ B A D+S△ D A C,∴ 12 · AB· AC· sin(α+β) =12 AB·AD· sinα+12 AD· AC· sinβ.两边同时除以 12 AB·AC,可得sin(α+β) =ADAC·sinα+ADAB· sinβ=cosβ· sinα+cosα· sinβ.运用诱导公式 ,易证α,β不是锐角时 ,式子仍然成立 .图 2证法 2 如图2 ,设∠BAD=α,∠DAC=β(0 <α,β <π2 ) ,作 BD⊥AD交 AC于 C,作BE⊥ AC于 E,则有 ADAC=cosβ,BDAB=sinα,ADAB=…  相似文献   

13.
一、选择题1.设sinα=-35,cosα=54,那么下列的点在角α的终边上的是().A.(-3,4)B.(-4,3)C.(4,-3)D.(3,4)2.下列四组函数f(x)与g(x),表示同一个函数的是().A.f(x)=sinx,g(x)=xsxinxB.f(x)=sinx,g(x)=1-cos2xC.f(x)=1,g(x)=sin2x+cos2xD.f(x)=1,g(x)=tanxcotx3.tanx+tany=0是tan(x+y)=0的().A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件4.要得到y=sin2x-π3的图象,只需将y=sin2x的图象().A.向左平移3πB.向右平移3πC.向左平移6πD.向右平移6π5.若α、β∈0,π2,则().A.cos(α+β)>cosα+cosβB.cos(α+β)>s…  相似文献   

14.
牛晓伟 《考试周刊》2012,(49):54-55
一、技巧1.变角例1:求证:sin(2α+β)sinα-2cos(α+β)=ssiinnαβ证明:∵2α+β=α+β+α∴sin(2α+β)-2cos(α+β)sinα=sin[(α+β)+α]-2cos(α+β)sinα=sin(α+β)cosα+cos(α+β)sinα-2cos(α+β)sinα=sin(α+β)cosα-cos(α+β)sinα=sin(α+β-α)=sinβ∴sin(2α+β)sinα-2cos(α+β)=ssiinnαβ评析:"角"是三角函数的基本元素,研究三角恒等变换离不开"角"的变换.对单角、倍角、和角、差角等进行适当的变形转化,往往能起到化难为易、化繁为简的作用.(甘肃省通渭县第一中  相似文献   

15.
人教版数学第一册(下)第89页复习参考习题15:已知α,β都是锐角,且sinα=55,sinβ=1100,求证α β=4π.错解:由sinα=55,0<α<2π,得cosα=255.由sinβ=1100,0<β<2π,得cosβ=31010.∴sin(α β)=sinαcosβ cosαsinβ=55×31010 255×1100=22.又0<α β<π,则α β=4π或α  相似文献   

16.
求函数的值域是中学数学中较为重要的题型之一,解决它没有固定的模式,也难以形成思维定势,因此应善于思考,多归纳积累,特别需要掌握常见题型的求函数值域方法,丰富自己的解题经验,下面从一题多解的角度来看求函数值域的方法.解法1:利用三角换元,令x=tanα,α∈(-π2,π2)则y=11-+ttaann22αα=ccooss22αα-+ssiinn22αα=cos2α∵α∈(-π2,π2)∴-π<2α<π∴y∈(-1,1]解法2:利用分离常数进行转化∵y=1-x21+x2=2-1+1-x2x2=1+2x2-1又∵1+x2≥1,∴0<21+x2≤2∴-1相似文献   

17.
中学数学中有些问题,直接解答往往受阻,如果能恰当地运用对称思想,可使问题容易解决,同时也给人以美的享受.本文通过几例,介绍它在解题中的几种巧用.一、解三角问题例1.求cosπ7cos2π7cos3π7的值.解:设x=cosπ7cos2π7cos3π7,y=sinπ7sin2π7sin3π7,则xy=18sin2π7sin4π7sin6π7=18sinπ7sin2π7sin3π7=18y.∵y≠0,∴x=18,即cosπ7cos2π7cos3π7=18.点评:这类三角问题常见,若用常规解法难而繁,这里我们挖掘问题潜在的对称性,构造出对称式,使问题得以轻松解决.二、解复数问题例2.已知z∈C,解方程zz-3iz=1+3i.〔1992年高考(理)题24〕…  相似文献   

18.
例1(2004年全国高考文史类试题)设α(0,π2),若sinα=35,则2姨cos(α+π4)=()A.75B.15C.-72D.4解∵α(0,π2),sinα=35,∴cosα=45.∴2姨cos(α+π4)=2姨(cosαsinπ4-sinαcosπ4)=cosα-sinα=45-35=15,故选B.例2(2004年全国高考广西卷)已知α为锐角,且tanα=12,求sin2αcosα-sinαsin2αcos2α的值.解sin2αcosα-sinαsin2αcos2α=sinα(2cos2α-1)sin2αcos2α=sinαcos2αsin2αcos2α=sinαsin2α=12cosα.由α为锐角及tanα=12,得1cos2α=sin2α+cos2αcos2α=tan2α+1=54.∴1cosα=5姨2.∴sin2αcosα-sinαsin2αcos2α=1…  相似文献   

19.
一、选择题 (本大题共 12小题 ,每小题 5分 ,共60分 ,每小题给出的 4个选项中 ,只有一项是符合题目要求的 )1.若α ,β∈ 0 ,π2 ,且cosα>sinβ ,那么下列关系式中正确的是 (   )   (A)α+ β=π2    (B)α+ β>π2   (C)α + β <π2 (D)α >β2 .设θ是第二象限角 ,则必有 (   )  (A)tan θ2 >cot θ2   (B)tan θ2 cos θ2   (D)sin θ2 相似文献   

20.
三角代换巧解不等式问题,即根据题目的特点,选取恰当的三角代换,能达到化难为易,化繁为简的目的,它是解不等式问题常用的方法,现举例说明. 例1 已知a,b,x,y∈R,且a2 +b2=1,x2+y2=1,求ax+ by的范围. 解:通过观察已知条件我们不难发现:令{a=sinα,b=cosα,{x=sinβ,y=cosβ,则ax+by=sinαsinβ+cosαcosβ=cos(α-β).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号