首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion classification by analyzing the surface electromyografic(sEMG) signals. In contrast to the existing methods,considering the non-stationary and nonlinear characteristics of EMG signals,to get the more separable feature set,we introduce the empirical mode decomposition(EMD) to decompose the original EMG signals into several intrinsic mode functions(IMFs) and then compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector machines(LS-SVMs) ,the multi-class classifier is designed and constructed to classify various motions. The results of contrastive experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore,compared with other classifiers using different features,the excellent performance indicated the potential of the SVM techniques embedding the EMD-AR kernel in motion classification.  相似文献   

2.
提高信噪比是地震信号数字处理的主要任务.研究了几种常用的小波去噪方法在地震信号中去除随机噪声的应用,分析了各自的特点,并改进了算法.通过MATLAB的仿真结果表明,小波变换的去噪效果明显优于传统的Fourier变换方法.  相似文献   

3.
This paper analyses a key problem in the quantification of pulse diagnosis. Due to the subjectivity and fuzziness of pulse diagnosis,quantitative methods are needed. To extract the parameters of pulse signals,the prerequisite is to detect the corners of pulse signals correctly. Up to now,the pulse parameters are mostly acquired by marking the pulse corners manually,which is an obstacle to modernize pulse diagnosis. Therefore,a new automatic parameters extraction approach for pulse signals using wavelet transform is presented. The results testified that the method we proposed is feasible and effective and can detect corners of pulse signals accurately,which can be expected to facilitate the modernization of pulse diagnosis.  相似文献   

4.
基于分形维前臂动作表面肌电信号的分类   总被引:1,自引:0,他引:1  
通过分形维对表面肌电信号进行识别分类.在30个健康志愿者做前臂内旋和外旋时,从他们的右前臂肌前群分别采集2类动作表面肌电信号.当原始动作表面肌电信号用小波包变换分解成几个子信号后,采用一种基于模糊自相似性的方法计算原始信号和4个子信号的分形维.结果表明:从频带0~125 Hz的子信号求得的内旋和外旋动作表面肌电信号的分形维有各自的范围;通过该分形维进行Bayes决策时,错误识别率仅2.26%.因此,该分形维适合用来识别内旋和外旋动作表面肌电信号.  相似文献   

5.
本文叙述了将声发射检测技术应用于火车货车滚动轴承故障诊断中,通过小波包分析提取滚动轴承声发射信号的能量特征,并通过小波包消噪处理法突出能量特征,以达到较好故障诊断效果。  相似文献   

6.
Speech signals in frequency domain were separated based on discrete wavelet transform (DWT) and inde- pendent component analysis (ICA). First, mixed speech signals were decomposed into different frequency domains by DWT and the subbands of speech signals were separated using ICA in each wavelet domain; then, the permutation and scaling problems of frequency domain blind source separation (BSS) were solved by utilizing the correlation between adjacent bins in speech signals; at last, source signals were reconstructed from single branches. Experiments were car- ried out with 2 sources and 6 microphones using speech signals at sampling rate of 40 kHz. The microphones were aligned with 2 sources in front of them, on the left and right. The separation of one male and one female speeches lasted 2.5 s. It is proved that the new method is better than single ICA method and the signal to noise ratio is improved by 1 dB approximately.  相似文献   

7.
为提高基于表面肌电信号的人体腰背动作识别率,提出一种基于小波包能量与改进NARX神经网络的分类识别新方法。利用小波包变换对动作部位进行表面肌电信号特征提取,并采用改进NARX神经网络进行分类识别。选取8名实验者分别在扭腰、弯腰、侧弯腰3种动作下进行表面肌电信号数据采集,选择db4小波包函数对信号进行6层分解,得到第6层64个频带的小波包分解系数,代表各个动作信息的特征向量,作为改进NARX神经网络的输入进行分类识别。对照实验组中,改进NARX神经网络的识别率较高,总体识别率达到96.7%。实验结果表明,利用该识别方法对腰部动作进行分类识别,分类准确,且识别率更高。  相似文献   

8.
为提高基于表面肌电信号的人体腰背动作识别率,提出一种基于小波包能量与改进NARX神经网络的分类识别新方法。利用小波包变换对动作部位进行表面肌电信号特征提取,并采用改进NARX神经网络进行分类识别。选取8名实验者分别在扭腰、弯腰、侧弯腰3种动作下进行表面肌电信号数据采集,选择db4小波包函数对信号进行6层分解,得到第6层64个频带的小波包分解系数,代表各个动作信息的特征向量,作为改进NARX神经网络的输入进行分类识别。对照实验组中,改进NARX神经网络的识别率较高,总体识别率达到96.7%。实验结果表明,利用该识别方法对腰部动作进行分类识别,分类准确,且识别率更高。  相似文献   

9.
本文介绍了小波变换原理,通过对有源电力滤波器的通道信号分解与重构、对谐波进行处理,采用MATLAB工具的函数模块对其通道信号作了仿真分析,结果表明小波变换的多分辨率特性能有效修正仪器通道谐波畸变波及频谱,对进一步实现滤除谐波问题有指导意义。  相似文献   

10.
提出了一种基于小波变换理论的超分辨率重建算法,即利用小波变换得到图像的高频和低频子带,结合非线性外推技术对高频子带进行处理,在增加高频子带信息量的同时进行迭代改进,并采用小波阈值方法进行去噪处理.实验结果表明:该算法能够克服以往插值算法的不足,如高频损失、细节模糊等,能很好地提高图像的峰值信噪比,是图像重建的一种有效方法.  相似文献   

11.
在分析空时编码技术和多载波CDMA技术原理的基础上,采用turbo编码作为信道编码以及优化的复小波包作为多载波调制,提出一种基于复小波包和turbo码的空时分组编码的MC-CDMA系统,研究了其在瑞利衰落信道下的误码率性能.该系统能充分利用空时分组编码的发送分集和turbo码的良好抗信道衰落能力显著提高系统性能,而且还能利用优化复小波包的优良特性避免通常MC-CDMA系统由于插入循环前缀(CP)所带来频谱效率的降低.仿真结果表明,基于复小波包的空时分组编码的MC-CDMA系统要好于空时分组编码的通常MC-CDMA(STBC-MC-CDMA)系统,略好于采用CP的STBC-MC-CDMA系统;级联turbo码的空时编码技术的应用进一步增强了系统抗衰落信道下的各种干扰能力.  相似文献   

12.
  博;彭   《教育技术导刊》2021,20(12):49-53
为提高支持向量机预测模型的精确度,将最小二乘向量机与RBF神经网络引入预测模型,使用粒子群算法对RBF神经网络进行优化,使RBF神经网络能够提取向量机训练误差中的有效值,并再次进行数据集训练,使RBF神经网络模型能进一步预测支持向量机残差项。将粒子群算法优化的LSSVM-RBF混合回归预测模型用于大流域生态水环境预测,并将预测结果与其他4种模型进行对比。该模型的RMSE、MAE、MAPE、MSE分别达到了1.107 7、0.913 5、0.250 0、1.227 0,拟合程度进一步提高,表明基于粒子群算法优化的LSSVM-RBFNN混合预测回归模型能够有效提高预测精度。  相似文献   

13.
针对癫痫脑电(EEG)信号的非平稳性和非线性,提出一种基于集合经验模式分解(EEMD)提特征并利用最小二乘支持向量机(LS-SVM)的脑电信号分类方法。首先利用EEMD将EEG信号分成多个经验模式分量,得到各阶本征模式分量(IMF),然后提取有效特征,最后用LS-SVM对其进行分类,实验结果表明,该方法对癫痫发作间歇期和发作期EEG的提特征后分类识别正确率达到98%。  相似文献   

14.
基于小波变换的跨膜蛋白跨膜螺旋区段预测   总被引:3,自引:0,他引:3  
1 Introduction In existing genome databases ,about 20 %-30 %ofgenetic products have been esti mated as encodedmembrane proteins[1]. However , about 30 % of allproteins are membrane proteins inliving cells .The TMproteins play ani mportant role especiallyi…  相似文献   

15.
考虑将支持向量机的思想应用于信息融合,提出基于支持向量机的信息融合的方法,并将这种方法应用于城市污水处理厂的数据处理。同时使用神经网络的信息融合方法与其相比较,实验的结果表明,基于支持向量机的信息融合的方法在对城市污水处理厂的这类数据的模式识别中,有着较好的分类预测能力。  相似文献   

16.
主要研究利用小波变换和径向基神经网络进行签名图像的分类识别.它包括不同签名图像和相似签名图像的分类识别.所提出的方法包括小波域的图像特征提取和利用径向基神经网络的模式分类.采用小波的多分辨分析方法对签名图像进行时频分析特别有效.熵和能量相关特征的概念用于小波域.径向基神经网络具有快速的收敛速度和分类能力.实验仿真证实了利用小波变换和径向基神经网络进行签名图像分类识别的有效性,且成功识别率100%.  相似文献   

17.
离散仿射小波变换神经网络函数逼近方法   总被引:1,自引:0,他引:1  
通过对仿射离散小波框架的分析,用离散仿射小波变换时频局部化集中与神经网络的有关理论,研究了前传神经网络的组织结构与简化,提出了处理方案,并利用此理论对波函数的逼近给出了一般算法.  相似文献   

18.
INTRODUCTION Most underwater acoustic signals received by sonar are corrupted inevitably by unpredictable noise sources. In most cases, sonar system is adversely influenced by noise so disturbing that target signals cannot be detected and classified correctly so that pre-processing is necessary to reduce the noise as much as possible. Methods of noise reduction based on wavelet transform have been developed extensively in pre-vious literatures (Xu et al., 1994; Sun, 1998), and include wav…  相似文献   

19.
本文提出一种利用特征加权支持向量机(FWSVM)识别河流、湖泊等水域中血吸虫尾蚴的算法.该算法采用图像形态学、动态阈值化等图像处理方法在图片中搜索可能存在尾蚴的区域,然后利用疑似区域图像的Hu矩作为特征值训练FWSVM,最后利用训练好的分类器对采集的视频进行识别.实验结果表明该算法能够有效识别水域中的血吸虫尾蚴.  相似文献   

20.
本文对数据不平衡以及其他因素对支持向量分类机的影响进行了简单而系统的实验研究。结果表明,数据不平衡的实质是边界信息的不平衡,由此可能导致分类边界不恰当的偏移,进而降低分类器的性能。增大学习样本容量可丰富边界信息,进而可削弱数据不平衡对分类器带来的不良影响。然而,当分类学习的概念较复杂时,即使数据是平衡的,分类器也很难获得理想的决策边界。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号