首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined whether reading a refutational or non-refutational text would induce different cognitive processing, as revealed by eye-movement analyses. Unlike a standard expository text, a refutational text acknowledges a reader’s alternative conceptions about a topic, refutes them, and then introduces scientific conceptions as viable alternatives. Forty university students read one or the other type of text about the phenomenon of the tides. All had alternative conceptions about the topic. Findings showed that at post-test (off-line measure) refutational text readers learned more than non-refutational text readers. Outcomes regarding indices of visual behavior (on-line measures) during reading revealed that refutational text readers fixated the text segments presenting scientific concepts for a longer time overall than non-refutational text readers, in particular during the second-pass reading. Refutational text readers also fixated the refutational segments for a shorter time than non-refutational text readers for the control segments. Furthermore, all indices of visual attention predicted learning only for the refutational text readers. The more the students’ reading of the refutational text was strategic, the better they learned from it. Implications about eye-tracking methodology and the refutational effect are drawn.  相似文献   

2.
The purpose of this study was to explore the influences of text structure on students' conceptual change. Case studies were conducted of three sections of physics (Physical World, Physics, and Honors Physics) for 8 months of an academic year. Qualitative data (including observation field notes, interviews, videotapes, audiotapes, and questionnaires) were analyzed from the perspective of grounded theory by constant comparison through the framework of social constructivism. Results showed that individuals used refutational text to change their alternative conceptions, find support for their scientific preconceptions, gain the language necessary to discuss their ideas, and acquire new concepts. We also found instances, however, when students ignored the text and persisted with their alternative conception, or when students found support for their nonscientific ideas from refutational text. In these cases, we found that either the refutation was not direct enough to be effective, or students' reading strategies were insufficient to facilitate conceptual change. In investigating the power of refutational text, we found that refutational text does cause cognitive conflict. We also discovered that while cognitive conflict may be necessary for conceptual change to occur, it is not sufficient. Although refutational text is effective on the average for groups of students, it will need to be supplemented by discussion for individuals. J Res Sci Teach 34: 701–719, 1997.  相似文献   

3.
The purpose of this study was to investigate elementary school pre-service teachers’ understanding of photosynthesis and to examine if a refutational text can support understanding of photosynthesis better than a non-refutational text. A total of 91 elementary school pre-service teachers read either a refutational or a non-refutational text concerning photosynthesis and then answered open-ended questions. Our results indicate that there are critical problems associated with student teachers learning about the process of photosynthesis, even after it has been systematically taught in teacher education. However, the results positively indicate that refutational science texts seem to foster effective conceptual change among student teachers. The results interestingly showed that students who read a refutational text improved their systemic and factual understanding of photosynthesis more than did those who read a non-refutational text. Especially students who had naïve prior understanding regarding photosynthesis benefitted more from a refutational text. Thus, a refutational text may act as an effective facilitator of conceptual change. These results have implications for teacher education, where conceptual mastery of the most important science phenomena, such as photosynthesis, should be achieved. A refutational text is an easy and effective way to support conceptual change in higher education. Thus, this study highlights the importance of domain-specific science education in teacher programmes.  相似文献   

4.
Numerous studies have shown that students often hold conceptions that conflict with accepted scientific ideas, both prior to and after instruction. The failure of instruction to affect students' conceptions can be interpreted as a failure to facilitate conceptual change. In this paper, an instructional strategy will be described that facilitates conceptual change in the special case where conceptual difficulties appear to arise because students confuse related physics concepts. The strategy involves two parts. Firstly, students observe an experiment or demonstration that conflicts with what they expect to see. Secondly, the instructor identifies students' intuitions that are correct but that they have associated with an incorrect physics term, and substitutes the correct physics term. Students can thus develop more scientifically acceptable understandings of physics concepts without having to give up their intuitive ideas. The use of this strategy will be illustrated in two domains of physics. Specializations: physics education, conceptual development, instructional design, improvement of tertiary science education.  相似文献   

5.
The aim of the study was to investigate the role of regulation and processing strategies in understanding science text. A total of 91 student teachers answered open-ended questions concerning photosynthesis before and after reading either a traditional or a refutational science text. After this, they also answered parts of the Inventory of Learning Styles. Understanding of photosynthesis increased after the text reading among all the students. However, deep and independent learners reached a better understanding than reproductive and support-dependent students. The refutational text seemed to promote understanding more than the traditional text. The study supports the assumption that personal characteristics play a role in learning complex scientific concepts. Further, refutational texts seem to facilitate high quality learning.  相似文献   

6.
The US National Science Education Standards and the Benchmarks for Science Literacy recommend that students understand the apparent patterns of motion of the Sun, Moon, and stars by the end of early elementary school, yet no research has specifically examined these concepts from an Earth‐based perspective with this age group. This study examines children’s understanding of the patterns of apparent celestial motion among first‐grade, third‐grade, and eighth‐grade students, and investigates the extent to which these concepts develop from elementary to middle school in students without targeted instruction. Twenty students at each grade level (total n = 60) were interviewed using a novel interview setting: a small dome representing the sky, which allowed students to demonstrate their ideas. Analysis reveals that elementary and middle school students hold a variety of non‐scientific ideas about all aspects of apparent celestial motion. While the eighth‐grade students’ understanding of the apparent motion of the Sun shows a greater level of accuracy compared with the third‐grade students, across the majority of topics of apparent celestial motion, the overall level of accuracy shows little change from third grade to eighth grade. Just as prior research has demonstrated the need for instruction to improve children’s understanding of the nature of celestial objects and their actual motions, these results support the need for research on instructional strategies that improve students’ understanding of celestial motion as seen from their own perspective.  相似文献   

7.
ABSTRACT

This study investigated how studying a refutational map, a type of argument map, affected conceptual change. Refutational maps visually display both correct and alternative conceptions. Participants (N?=?120) were randomly assigned to (1) a refutational map condition, (2) a refutational text condition, and (3) a non-refutational text condition. The post-test results showed that studying the refutational map led to better performance on free recall and learning transfer measures. Specifically, participants who studied the refutational map performed significantly better than others on a free recall test, and they significantly outperformed the non-refutational text group on a short-answer transfer test. The multiple-choice test, another transfer measure, failed to detect any differences among the three groups. The research also found that individual differences in need for cognition and logical thinking ability interacted with the type of study materials. Participants scoring lower on logical thinking ability gained more from studying the refutational map.  相似文献   

8.
This study was based on the framework of the “conflict map” to facilitate student conceptual learning about causes of the seasons. Instruction guided by the conflict map emphasizes not only the use of discrepant events, but also the resolution of conflict between students' alternative conceptions and scientific conceptions, using critical events or explanations and relevant perceptions and conceptions that explicate the scientific conceptions. Two ninth grade science classes in Taiwan participated in this quasi‐experimental study in which one class was assigned to a traditional teaching group and the other class was assigned to a conflict map instruction treatment. Students' ideas were gathered through three interviews: the first was conducted 1 week after the instruction; the second 2 months afterward; and the third at 8 months after the treatment. Through an analysis of students' interview responses, it was revealed that many students, even after instruction, had a common alternative conception that seasons were determined by the earth's distance to the sun. However, the instruction guided by the framework of the conflict map was shown to be a potential way of changing the alternative conception and acquiring scientific understandings, especially in light of long‐term observations. A detailed analysis of students' ideas across the interviews also strongly suggests that researchers as well as practicing teachers need to pay particular attention to those students who can simply recall the scientific fact without deep thinking, as these students may learn science through rote memorization and soon regress to alternative conceptions after science instruction. © 2005 Wiley Periodicals, Inc. J Res Sci Teach 42: 1089–1111, 2005  相似文献   

9.
This study explored third-grade elementary students' conceptions of nature of science (NOS) over the course of an entire school year as they participated in explicit-reflective science instruction. The Views of NOS-D (VNOS-D) was administered pre instruction, during mid-school year, and at the end of the school year to track growth in understanding over time. The Young Children's Views of Science was used to describe how students conversed about NOS among themselves. All science lessons were videotaped, student work collected, and a researcher log was maintained. Data were analyzed by a team of researchers who sorted the students into low-, medium-, and high-achieving levels of NOS understandings based on VNOS-D scores and classwork. Three representative students were selected as case studies to provide an in-depth picture of how instruction worked differentially and how understandings changed for the three levels of students. Three different learning trajectories were developed from the data describing the differences among understandings for the low-, medium-, and high-achieving students. The low-achieving student could discuss NOS ideas, the medium-achieving student discussed and wrote about NOS ideas, the high-achieving student discussed, wrote, and raised questions about NOS ideas.  相似文献   

10.
We hypothesized that instruction in the criteria of scientific arguments, in combination with constructivist epistemic beliefs, would produce greater learning about physics concepts. The study was a randomized experiment, where college undergraduates (n = 88) discussed, in pairs over the Web, several physics problems related to gravity and air resistance. Prior to their discussions, one‐half of the dyads received information on the nature of scientific arguments. All students were classified epistemologically as relativists, multiplists, or evaluativists. We found that students in the treatment group incorporated more scientific criteria into their discussion notes and accordingly developed better arguments on several dimensions. In addition, significantly more participants in the treatment group adopted the correct answer to one of the problems. Outcomes also differed in relation to students’ epistemic beliefs. Specifically, multiplists were less critical of inconsistencies and misconceptions, and interacted with their partners less than other belief groups, whereas evaluativists interacted more critically, bringing up different ideas from their partners. Evaluativists also solved one of the physics problems more accurately and tended to demonstrate a reduction in misconceptions. We discuss the results in light of instruction in scientific argumentation, conceptual development and change, and epistemic beliefs.  相似文献   

11.
The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students’ understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high school participated in the study. The classes were randomly assigned as the experimental and control group. The control group (N?=?35) was taught by traditional instruction while the experimental group (N?=?37) was taught cooperative learning based on conceptual change approach instruction. Chemical Bonding Concept Test (CBCT) was used as pre- and post-test to define students’ understanding of chemical bonding concepts. After treatment, students’ interviews were conducted to observe more information about their responses. Moreover, students from experimental groups were interviewed to obtain information about students’ perceptions on cooperative work experiences. The results from ANCOVA showed that cooperative learning based on conceptual change approach instruction led to better acquisition of scientific conceptions related to chemical bonding concepts than traditional instruction. Interview results demonstrated that the students in the experimental group had better understanding and fewer misconceptions in chemical bonding concepts than those in the control group. Moreover, interviews about treatment indicated that this treatment helped students’ learning and increased their learning motivation and their social skills.  相似文献   

12.
To learn from a text, students must make meaningful connections among related ideas in that text. This study examined the effectiveness of two methods of improving connections—elaborative interrogation and diagrams—in written lessons about posterior probability. Undergraduate students (N = 198) read a lesson in one of three questioning conditions (read twice, embedded questioning, and elaborative interrogation) and one of three diagram conditions (text only, diagram without redundant text, and diagram with redundant text). Elaborative interrogation negatively affected learning from the lesson, relative to reading the lesson twice. One possible explanation for this finding is that the quality of answers to the elaborative interrogations was poor. When the lesson was read twice, diagrams helped learning from the lesson relative to text only. Implications of these findings for instruction in probabilistic reasoning are discussed.  相似文献   

13.
The idea that characteristics acquired by an organism during its lifetime can be inherited by offspring and result in evolution is a substantial impediment to student understanding of evolution. In the current study, we performed a preliminary examination of how acquiring physical changes in a question prompt may differentially cue intuitive and scientific justifications of inheritance and evolution and how this varies based on how student learned the concept. Middle school students in a suburban northeastern district (N = 314) either learned about evolutionary change with a category construction task (with different levels of feedback support) or completed a worksheet. Three days later students responded to two free response scenarios (one where a physical change is acquired). Responses were coded based on student justifications for either science accuracy or intuitive nature. Specific reasons were coded by justification type with high inter-rater agreement (k > 0.93). Results showed that students were more likely to apply intuitive reasoning when a physical change was acquired (50%) than if the change was behavioral in nature (16%). Additionally, students who completed the category construction task provided significantly more scientifically accurate justifications about inheritance (M = 1.12) than control students (M = 0.47), and significantly less intuitive justifications (M = 0.67) than control (M = 1.13). Finally, category construction produced the most scientific reasoning when feedback was provided. Taken together, these results suggest that intuitive reasoning is differentially applied based on physical organismal changes, intuitive reasoning is less frequent when learning via category construction, and the category construction task is more effective for this population with the inclusion of feedback.  相似文献   

14.
To keep intuitive knowledge fluid for an extended time, we wish to encourage young children to examine continuously those intuitive explanations for natural phenomena which later become hard wired, highly resistant to development or change. To assist this we designed a learning package which integrated three extensively researched educational strategies (cooperative learning, informal inquiry and familiar context) for children to explore their notions about the topiclight. Children in a kindergarten class were encouraged to share their ideas about shadows and shadow formation with peers, as they took part in explorations of shadow formation inside and outside their classroom. Whole class discussions, small group conversations and final conversations between researcher and small groups provide insights into social and individual construction of knowledge, young children's abilities to be scientific and the social construction of gender. Specializations: children's learning in science and technology; inclusion; contexts, teaching models.  相似文献   

15.
We investigated a theoretical model including an instructional intervention and systematic processing to account for change in preservice teachers’ epistemological beliefs about teaching and learning in mathematics. General and subject-specific epistemological beliefs and systematic processing were assessed in 161 preservice teachers, randomly assigned to an experimental group whose epistemological beliefs about mathematics were activated and challenged through augmented activation and refutational text or to a control group who read a traditional expository text. The model was partially supported. The treatment group receiving the instructional intervention demonstrated greater change in implicit epistemological beliefs than the control group, and partial support for systematic processing as a mediator of the relationship between general epistemological beliefs and change in specific epistemological beliefs was obtained.  相似文献   

16.
17.
The ability to interpret graphs is highly important in modern society, but has proven to be a challenge for many people. In this paper, two teaching methods were used to remediate one specific misinterpretation: the area misinterpretation of box plots. First, we used refutational text to explicitly state and invalidate the area misinterpretation of box plots. Second, we used multiple external representations (MERs): Histograms were used as an overlay on box plots in order to give students a better insight in the way box plots represent data distributions. Third, we combined refutational text and MERs. We found that refutational text was successful in improving students’ interpretation of box plots, but that the use of MERs did not improve students’ interpretation of box plots. The addition of MERs also did not increase the effect of refutational text.  相似文献   

18.
One theoretical framework which addresses students’ conceptions and reasoning processes in mathematics and science education is the intuitive rules theory. According to this theory, students’ reasoning is affected by intuitive rules when they solve a wide variety of conceptually non-related mathematical and scientific tasks that share some common external features. In this paper, we explore the cognitive processes related to the intuitive rule more Amore B and discuss issues related to overcoming its interference. We focused on the context of probability using a computerized “Probability Reasoning – Reaction Time Test.” We compared the accuracy and reaction times of responses that are in line with this intuitive rule to those that are counter-intuitive among high-school students. We also studied the effect of the level of mathematics instruction on participants’ responses. The results indicate that correct responses in line with the intuitive rule are more accurate and shorter than correct, counter-intuitive ones. Regarding the level of mathematics instruction, the only significant difference was in the percentage of correct responses to the counter-intuitive condition. Students with a high level of mathematics instruction had significantly more correct responses. These findings could contribute to designing innovative ways of assisting students in overcoming the interference of the intuitive rules.  相似文献   

19.
We present results of an investigation of university students' development of mathematical models of motion in a physical science course for preservice teachers and graduate students in science and mathematics education. Although some students were familiar with the standard concepts of position, velocity, and acceleration from physics classes, most students had difficulty using these concepts to characterize actual or hypothetical motions. Furthermore, some students developed their own nonstandard method of describing accelerated motion in terms of changes in the average velocity, from the start of the motion up to a given time. This is in contrast to the physics community's use of the acceleration construct, defined in terms of changes in the instantaneous velocity, to describe such motion. Although the change in average velocity is not typically identified as an important construct in traditional physics texts, some students found it intuitively appealing, and were able to use it successfully to describe and predict motion. We conclude that by focusing on standard constructs, and ignoring possible intuitive ways that students might view motion, standard kinematics instruction may miss an opportunity to maximize student understanding. © 2007 Wiley Periodicals, Inc. J. Res. Sci. Teach 45: 153–173, 2008.  相似文献   

20.
Educational research has shown that high school and university students also follow the Aristotelian idea about motion; for example, a continuous action of a force is necessary to keep an object in motion. The survey presented in this article aims at a deeper investigation of secondary education students' ideas about the forces involved in objects moving under the sole influence of gravity. The main objectives are: (1) to investigate other ideas or difficulties, which intervene and determine students' mental models about motion and force, and (2) to reveal how the students in the sample are grouped according to their alternative conceptions. Our study has been mainly determined by the revision in Science Curriculum established in Greece three years ago. A survey has been administered to a total of 146 students (15–16 years old) attending six typical public high schools in Greece. The results presented show that the traditional instruction is pertinent while the approaches of the New Physics Curriculum have not been effectively expanded to the schools. The majority of the students exhibited the idea that the original force is continuously exerted to the ball during its motion. On the other hand, multivariate analysis has identified three discernible groups of students which have exhibited a persistent and rather consistent approach: (1) An extended group of students having the above misconception, (2) a second group of students which, generally, responded correctly to the tasks, and (3) a third group of students, which ignored the presence of the gravitational force and/or believe that the action-reaction forces are both exerted to the ball during its motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号