首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
直线和圆锥曲线位置关系中的综合问题能有效地考查同学们的思维品质和创新能力,因此成为高考解析几何问题重点考查的热点内容,既常考不衰,又创新不断.1代点作差通性通法例1过M(1,1)的直线交双曲线x42-y22=1于A、B2点,若M为弦AB的中点,求直线AB的方程.解法1显然直线AB不垂直于x轴,设其斜率为k,则其方程为y-1=k(x-1).由x24-y22=1,y-1=k(x-1)消去y得(1-2k2)x2-4k(1-k)x-2k2 4k-6=0.①设A(x1,y1),B(x2,y2),则x1、x2是方程①的2个根,又由于M为弦AB的中点,所以x12 x2=2k(1-k)1-2k2=1,所以k=21.经检验,当k=21时方程①的判别式大于零,所以直线…  相似文献   

2.
在讲授椭圆这部分内容时,我曾给学生出了这样一道题目:"过点P(2,1)作直线与椭圆x2/a2+y2/b2=1交于A、B两点,若点P平分弦AB,求弦AB所在的直线方程."学生很快就想出了两种解法:一种是设弦AB所在的直线方程为y-1=k(x-2),然后将直线方程代入椭圆方程来解题;另一种是用两点法.  相似文献   

3.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

4.
在解条件比较复杂或条件比较隐晦的综合题时 ,常有找不到途径不知如何下手的感觉 .这种情况的出现 ,原因是没有充分挖掘和使用好条件 .下面就一道解几题谈如何应用条件 ,开拓解题思路 .题 一直线 l被两直线 l1 :4x y 6 =0和 l2 :3x- 5 y- 6 =0截得的线段的中点恰好是坐标原点 ,求这条直线的方程 .分析 本题条件有三个 :(1)直线 l1 的方程 4x y 6 =0 ;(2 )直线 l2 的方程 3x- 5 y- 6 =0 ;图 1(3)直线 l被l1 ,l2 截得的弦中点坐标 (0 ,0 ) .思路一 如图1,欲求弦 MN 所在的直线方程 ,因弦中点 (0 ,0 )为已知 ,若能求弦 MN某一端点的坐…  相似文献   

5.
1.光的反射例 1 自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线l所在的直线方程. (89高考) 解圆方程的标准形式是(x-2)2+(y-2)2=1. 设光线l所在的直线方程是 y-3=k(x+3) (斜率k待定)由题意知k≠0,于是l的反射点的坐标是(-3/k-3,0).  相似文献   

6.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

7.
韦达定理是代数中的一个重要定理,它在解析几何中也有广泛的应用。在解某些解析几何题时,如果注意运用韦达定理,有时能使运算简便。如以下几例。 一、利用x_1 x_2=-b/a 例1.点P(2,2)是椭圆x~2 8y~2 4x-24y 6=0的一条弦的中点,求这条弦所在的直线方程。 解:设所求的直线方程为y-2=k(x-2),它与椭圆的方程x~2 8y~2 4x-24y 6=0组成方程组,消去y得:(1 8k~2)x~2-(32k~2-8k-4)x 32k~2-16k-10=0,设它的两个根是x_1和x_2,则有x_1 x_2=4,根据韦达定理有  相似文献   

8.
例1求过点P(5,4)且与圆x2+y2=25相切的直线l的方程.错解设所求过点P(5,4)的直线l的斜率为k,则其方程为y-4=k(x-5),即kx-y-5k+4=0.圆x2+y2=25的圆心O(0,0),半径r=5,由条件|-5k+4|!#k2+1=5,解得k=-490,则直线l的方程为9x+40y-115=0.剖析错解忽视了斜率不存在的情况.应对直线斜率的存在性进行分类讨论,还要补上当斜率不存在,即直线l垂直于x轴时直线l的方程x=5,再证明直线l=5与圆x2+y2=25相切.综合得直线l的方程为x=5或9x+40y-115=0.注意解与直线斜率有关的问题时,要分斜率存在与不存在两类.例2若点P(m,n)到A(-2,4)、B(6,8)的距离之和最小,…  相似文献   

9.
在讲授椭圆这部分内容时,我曾给学生出了这样一道题目:“过点P(2,1)作直线与椭圆x2/16 y2/4=1交于A、B两点,若点P平分弦AB,求弦AB所在的直线方程.”学生很快就想出了两种解法:一种是设弦AB所在的直线方程为y-1=k(x-2),然后将直线方程代入椭圆方程来解题;另一种是用两点法. 这时,有一个学生举手,说自己还有第三种解法,她的解法如下: 如图1,设A(x,y),因为点P平分弦AB,所以B点坐标为(4-x,2-y). 因为A、B两点在椭圆x2 4y2=16上,  相似文献   

10.
如果直线l经过点A(x0 ,y0 )且斜率为k ,则直线l的方程为y - y0 =k(x -x0 ) ,反过来 ,如果直线l的方程为 :y- y0 =k(x-x0 ) ,那么直线l经过点A(x0 ,y0 ) ,在解题中 ,如果能逆用直线方程的点斜式 ,能简化解题过程 ,现分析几例 ,供参考 .     图 1例 1 曲线 y =4 -x2 + 1与直线 y=k(x- 2 ) + 4有两个交点 ,求k的范围 ,分析 该题若利用解方程的方法来解较繁 ,但若将直线方程变形为 y- 4=k(x- 2 ) ,会发现直线恒过定点A(2 ,4 ) ,这样就可以利用数形结合来解决 .解 将曲线方程变形得x2 + (y- 1) 2 =4  (y≥ 1) ,该曲线是以 (0 ,1)为圆…  相似文献   

11.
已知二次曲线方程为:F(x,y)=Ax~2 Bxy Cy~2 Dx Ey F=0,若以点P(x_0,y_0)为中点的二次曲线的弦存在,求这弦所在的直线方程,是解析几何里常见的一类问题。本文旨在给出这弦所在直线方程的四种求法。 方法一,设所求直线方程为y-y_0=k(x-x_0)将y=k(x-x_0) y_0代入二次曲线方程,整理得:(A BK CK~2)x~2-[2Cx_0k~2 (Bx_0-2Cy_0-E)k-(By_0 D)]x [Cx_0~2k~2-(2Cx_0y_0 Ex_0)k (Cy_0~2 Ey_0 F)]=0  相似文献   

12.
错在哪里     
1.江苏省姜堰市第二中学 石志群(225500)题 已知两椭圆方程分别为:x~2 9y~广-45=0,x~2 9y~-6x-27=0,求过两椭圆的交点且与直线x-2y 11=0相切的圆的方程.(1984年高考题)解 设过两已知椭圆交点的圆的方程为:x~2 9y~2-6x-27 λ(x~2 9y~2 -45)=0.即 (1 λ)x~2 (9 9λ)y~2-6x-27-45λ=0,由x一2y 11=0得 x=2y-11,代入上式得(13 13λ)y~ 2-(56 44λ)y 160 76λ=0.当圆与直线相切时,有△=0,即(56 44λ)~2-4(13 13λ)(16O 76λ)=0.  相似文献   

13.
一、忽略斜率不存在若将直线方程设为点斜式或斜截式,则应针对斜率是否存在进行分类讨论,否则极易漏解.【例1】 求过(2,1)且与直线y=3x-1夹角为30°的直线方程.错解:设所求斜率为k,因为直线y=3x-1的斜率为k1=3,由3-k1+3k=tan30°=33,得k=33.故所求直线方程为y-1=33(x-2),即x-3y+3-2=0.剖析:这里忽略了斜率不存在的情况.事实上,还有一条直线x=2也满足.【例2】 已知直线l经过点(4,8),且到原点的距离是4,求直线l的方程.错解:设所求直线l的方程为y-8=k(x-4),可化为kx-y+(8-4k)=0,由点线距离公式可得|8-4k|k2+1=4,解得k=34.所求直线方程为y-8=3…  相似文献   

14.
本刊86年第3期《二次曲线中点弦方程和弦中点的轨迹方程》一文例3“过点P(0,1)作直线与抛物线y~2=x相交,求被抛物线截得的弦的中点的轨迹的方程”的答案中说轨迹是抛物线(y-1/2)~2=1/2(x 1/2)位于已知抛物线y~2=x内且在x轴下方的那一段  相似文献   

15.
基本问题 :已知圆的方程为 x2 + y2 =r2 ,求过圆上一点 P0 (x0 ,y0 )的圆的切线方程。解法 1:若 y0 ≠ 0 ,则所求切线斜率存在 ,设所求方程为 y- y0 =k(x- x0 ) ,代入 x2 + y2 =r2 得 :(1+ k2 ) x2 + (2 ky0 - 2 k2 x0 ) x+ y0 2 + k2 x0 2 -2 kx0 y0 - r2 =0 ,由判别式△ =0得 :(r2 - x0 2 ) k2 + 2 x0 y0 k+ r2 -y0 2 =0。又 x0 2 + y0 2 =r2 ,∴ y0 2 k0 2 + 2 x0 y0 k+ x0 2 =0。即 (y0 k+ x0 ) 2 =0 ,解得 k=- x0 / y0 。故所求切线方程为 y- y0 =- x0 / y0 (x- x0 ) ,即 x0 x+ y0 y=x0 2 + y0 2 亦即 x0 x+ y0 y=r2 。 1当 y0 =0时 ,…  相似文献   

16.
1问题的提出试题已知椭圆C:x2+4y2=16,过点P(2,1)作一直线l交椭圆C于A,B两点,若点P为交点弦AB的中点,求直线l的方程.这是一道我校"圆锥曲线与方程"一章阶段测试的试题,讲评试题时笔者采用的是"点差法"与"设而不求"两种常规方法,课后有一位同学提出教辅材料中介绍的一种简解方法如下:将点P(2,1)代入椭圆的切线方程x0x+4y0y=k,得2x+4y=k,点P(2,1)在此直线上得k=8,则直线l的方程为2x+4y=8即  相似文献   

17.
众所周知,曲线f(x,y)=0关于x轴对称的曲线方程是f(x,-y)=0,关于y轴对称的曲线方程是f(-x,y)=0,关于原点成中心对称的曲线方程是f(-x,-y)=0由此想到曲线f(x,y)=0关于任何已知直线ax+by+c=0成轴对称的曲线方程是什么形式?关于任何已知点M(a,b)成中心对称的曲线方程又是什么形式?这就是本文要探讨的问题。 先看一名中学生对下面一道习题的奇妙解法。题目是:“求直线3x-4y+2=0关于直线x-y+3=0成轴对称的直线方程。” 解 由x-y+3=0,得x=y-3,y=x+3,同时代入3x-4y+2=0中,得3(y-3)-4(x+3)+2=0,即4x-3y+19=0。此即为所求的对称直线方程。  相似文献   

18.
<正>直线与圆锥曲线相交所得弦的中点问题是解析几何中的重要内容之一,也是高考的热点问题,这类问题一般有以下几种类型:(1)求中点弦所在的直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦的中点坐标问题等.其解法有点差法、待定系数法、参数法以及中心对称变换法等,但最常用的方法为点差法和待定系数法.一、求中点弦所在直线方程问题【例1】已知一直线与椭圆x24+y22=1交于A、B  相似文献   

19.
<正>解析几何中经常出现与中点坐标公式有关的问题.奇怪的是,在三点共线的前提下运用中点横坐标公式,与运用中点纵坐标公式有时得出的结果不一样,这是为什么呢?一、案例呈现例1 过点P(0,1)作直线l与直线l_1:2x+y-8=0和l_2:x-3y+10=0分别交于A、B两点,线段AB的中点为P,求直线l的方程.解法1 (1)若直线l的斜率不存在,则l的方程为x=0,与l_1\,l_2的方程联立方程组,可  相似文献   

20.
在解析几何中“求以圆锥曲线中的定点为中点的弦的方程”是直线与圆锥曲线位置关系中重要考点之一,高考中也多次出现.题目:设A、B两点是双曲线C:2x2-y2=2上两点,点N(1,2)是线段AB中点,求直线AB方程.解法1(巧用韦达定理,整体替换):要求过定点N(1,2)的直线AB的方程,关键是求斜率k.设点A(x1,y1),点B(x2,y2),由中点公式知:x1+x2=2,y1+y2=4,再利用韦达定理整体替换构造关于k的方程,求k的值.设直线AB方程为:y=k(x-1)+2,代入双曲线C的方程整理得:(2-k2)x2+2k(k-2)x-k2+4k-6=0.当2-k2≠0时,则Δ=4k2(k-2)2-4(2-k2)(-k2+4k-6)>0,解得k<23且k≠…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号