首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题 1  (邹黎明提供 ) △ABC中 ,CD⊥AB于D ,△ACD、△BCD、△ABC的内切圆分别切AC、BC、AB于E、F、G。证明或否定 :∠EGF为直角的充要条件是∠ACB为直角。题 2  (王 勇提供 ) 设实系数多项式 f(x) =xn+an - 1xn - 1+… +a1x +a0 ,令bk=coskπn ,k =0 ,1 ,2 ,… ,n。证明或否定 :  2 n- 2n [f(b0 ) +( -1 ) nf(bn) ]+2 n- 1n ∑n -1k=1( -1 ) kf(bk) =1。(注 每小题的第一位解答正确者将各获奖金 5 0元 )有奖解题擂台(62)$江苏无锡市硕放中学@邹黎明!邮编:214142 $重庆市西南师大附中@王勇!邮编:400700…  相似文献   

2.
题设xi>0(i=1,2,3…,n),x1+x2+…+xn=1,n≥2,n∈N+,证明或否定:(x1+x2+…+xn)11+1+3x1+11+1+3x2+…+11+1+3xn≤n2n+n+3.(注供题人对第一个给出正确证明与否定的人提供100元的奖金)有奖解题擂台(80)@孙文彩$广东省深圳市平冈中学!邮编:518000  相似文献   

3.
活题(14) 设函数f(x)=sum from k=0 to n-1 tg(x kπ/n),试证明或否定(1)f(x)的最小正同期为π/n;(2)当n为奇出时,f(x)=n tgnx;当n为偶数时,f(x)=—n ctgnx.(设擂人:江苏通州市二甲中学 邮编:226321 曹兵 设奖60元)在本题收到的解答中,第一份解答正确者为王燮明(奖金得主,江苏木渎中学 215101 1995年6月23日);以后陆续收到解答正确者分别是;邱树林(山东无棣一中 251900);朱恒杰(山东淄博市教研室 255033);黄军华(湖南师大附中 410006);陆伟成(上海冶金工业学校 200126);傅杰(湖南花垣县三中 416402);应怀顺(空军大连通信士官学校短波室 116100);张云华(四川沪县一中 646123);邓永武(湖北仙桃中学9301班433000).  相似文献   

4.
文[1]收录了如下的Nesbitt不等式:设S k是四面体A1A2A3A4的顶点Ak(k=1,2,3,4)对面的三角形面积,记41kkS S==∑,λ≥1,则414()23kk kSS Sλλ=≤∑?<.①笔者发现,对于n边形,也有定理在n边形A1A2An中,记A1A2=a1,A2A3=a2,,An A1=an,λ≥1,1nkks a==∑,则1()2(1)nkk knan s aλλ=?≤∑?<.②证明由常见不等式x1x2xnnα+α++α(x1x2xn)n≥+++α③(其中x1,x2,,xn,α∈R+,且α≥1),得11n(k)(1nk)k k kka nas a n s aλλ==∑?≥∑?221(1n k)k k knan sa aλ==∑?,由文[2]定理得2212121()()nnkk knk k kk kkaasa a sa a===∑?≥∑∑?222221…  相似文献   

5.
题设非负数x、y、z满足xy+yz+zx=1,n∈N.证明或否定:1(x+y)n+1(y+z)n+1(z+x)n≥2+12n.(注供题人对第一位完整正确解答者授予奖金50元.)有奖解题擂台(77)@贺斌$湖北省谷城县第三高级中学!邮编:441700  相似文献   

6.
《数学通报》2020年9期数学问题2562给出了不等式:已知a,b,c>0满足a+b+c=3,则1-ab 1+ab+1-bc 1+bc+1-ca 1+ca≥0(1).不等式结构对称,值得关注.为此,本文拟对不等式(1)的证明方法、变式、推广等方面作一探究.为了表述方便,由∑n k=1 x k y k·∑n k=1 x ky k=∑n k=1 x k y k 2·∑n k=1 x ky k 2≥∑n k=1 x k 2,可得柯西不等式的一个变式:引理设x 1,x 2,…,x n>0,y 1,y 2,…,y n>0,则有∑n k=1 x k y k≥(∑n k=1 x k)2∑n k=1 x ky k(2),等号当且仅当y 1=y 2=…=y n时成立.  相似文献   

7.
题设x,y,z是正实数,满足x2+y2+z2=1,n是正整数,证明或否定:11-x2n+1-1y2n+1-1z2n≥(n+n1)1+1n.(注:供题人对第一位正确解答者给予奖金30元)有奖解题擂台(82)@郭要红$安徽师范大学数学系!邮编:241000  相似文献   

8.
浅谈定积分在不等式证明中的应用   总被引:1,自引:0,他引:1  
高中数学试验教科书第三册引入了《积分》,从定积分的概念及它在几何上的应用可以知道 ,在区间上的定积分就是所求的曲边梯形的面积的极限值 .由此 ,我们可以引入以下不等式 .定理 :设函数 y =f ( x)在 ( 0 ,+∞ )上为单调递减 ,且 f ( x) >0 ,则有∑nk=2f ( k) <∫n1 f ( x) dx ( 1)∑nk=1f ( k) >∫n+ 11 f ( x) dx ( 2 )证明 :因为 f ( x)在 ( 0 ,+∞ )上单减 ,所以 f ( 1) >f ( 2 ) >…… >f ( n -1) >f ( n) >0由图 1,得∑nk=2f ( k) =f ( 2 ) . 1+f ( 3 ) . 1+… +f ( n) . 1=S2 +S3 +… +Sn <∫n1 f ( x) dx  所以 ( 1)式成立 .…  相似文献   

9.
本文推广了文献[1]、[3]给出的不等式,得到以下结果:(1)设Ai(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,p 1n,则|A1+…+Ak|p |A1|+…+|Ak|p;(2)设Ai,Bi,…,Ci(i=1,2,…,k)都是n阶正定或半正定厄米特矩阵,α,β…,r都是正实数,且α+β+…+r 1Ai|α·|Ai|α·|Bi|β…|Ci|r |∑kn,则∑ki=1i=1Bi|β…|∑kCi|r.|∑ki=1i=1  相似文献   

10.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

11.
2004西部数学奥林匹克试题第三题为:求所有的实数k,使得不等式a2+b2+c2+d2+1≥k(a+b+c+d)对任意a,b,c,d∈[-1,+∞)都成立。文[1]给出它的解为k=34,从而上题可改叙如下:定理1对于任意a,b,c,d∈[-1,+∞),有a3+b3+c3+d3+1≥34(a+b+c+d)。证明见文[1]。进一步研究,又可得到如下的几个定理:定理2设k为大于1的偶数,则当n≥(k-1)k-1时,对坌xi∈R(i=1,2…,n),有:ni=1移xik+1≥nk xi。证明考察函数f(x)=nxk+1-kx,则f'(x)=k(nxk-1-1),令f’(x)=0,由k为大于1的偶数,得x=1k-1姨n,即当xk-1姨1n时f(x)单调增,即fmin(x)=f(1k-1姨…  相似文献   

12.
笔者在解决一些不等式问题时,经常遇到题目条件难以放缩或不等关系等,而应用导数常可以使问题简单许多. 1用导数降低原不等式次幂 例1设x为非负实数,n为正整数证明:n∑k=1xk2/k≥xn(n+1)/2. 证明 设f(x)=n∑k=1xk2/k-xn(n+1)/2.则f'(x)=n∑k=1kxk2-1-n(n+1)/...  相似文献   

13.
第一天(2006-01-12)一、实数a1,a2,…,an满足a1+a2+…+an=0.求证:max1≤k≤n(a2k)≤3n∑in=-11(ai-ai+1)2.(朱华伟供题)二、正整数a1,a2,…,a2006(可以有相同的)使得aa12,aa23,…,aa22000065两两不相等.问:a1,a2,…,a2006中最少有多少个不同的数?(陈永高供题)三、正整数m、n、k满足mn=k2+k+3.证明:不定方程x2+11y2=4m和x2+11y2=4n中至少有一个有奇数解(x,y).(李伟固供题)第二天(2005-01-13)四、在Rt△ABC中,∠ACB=90°,△ABC的内切圆⊙O分别与边BC、CA、AB相切于点D、E、F,联结AD,与内切圆⊙O相交于点P,联结BP、CP.若∠BPC=90…  相似文献   

14.
利用经典的分析知识来研究Fibonacci多项式的组合性质:∑a1+a2+…+ak=nFa1+1(x) Fa2+1(x)…Fak+1(x)=∑[n+k2-1]l=0Cln+k-l-1Ck-1n+k-2l-1xn-2l,并得到一个有趣的结果:∑a1+a2+…+ak=nFa1+1 Fa2+1…Fak+1=∑[n+k2-1]l=0Cln+k-l-1Ck-1n+k-2l-1.  相似文献   

15.
错在哪里     
1 武汉市东西湖吴家山中学 甘大旺 (邮编 :43 0 0 40 )题 关于x的方程 |x|=kx +1有负根而无正根 ,则实数k的取值范围是 (   )。(A) [1 ,+∞ )   (B) [-2 ,1 ](C) ( -1 ,1 ](D) ( -1 ,+∞ )错解 由于x <0 ,则原方程可变形为-x =kx +1 ,即 (k+1 )x =-1 ,则k +1 =-1x >0 ,则k >-1。故选 (D)。解答错了 !错在哪里 ?不妨取k =0∈ ( -1 ,+∞ ) ,则此时原方程有一正根x1=1和一负根x2 =-1 ,于是 (D)错。上述解法错在当k∈ ( -1 ,+∞ )时 ,原方程确实有负根但可能兼容着正根。正确解法一 易验知x≠ 0 ,下面分两类情形 ;(Ⅰ )当x <0时 ,…  相似文献   

16.
一、根据条件直接猜想例1已知数列{an}中的各项分别为182××132,…,8n(2n-1)2(2n+1)2,…,Sn是数列的前n项和,计算可得S1=98,S2=2254,S3=4489,S4=8810.根据结果猜测Sn的表达式,并用数学归纳法证明.解由S1=1-19,S2=1-215,S3=1-419,S4=1-811,猜想Sn=1-(2n1+1)2(n缀N+).证明如下:(1)当n=1时,S1=1-312=89,等式成立.(2)设当n=k(k≥1,k缀N)时,Sk=1-(2k1+1)2成立.∵an=(2n-1)82(n2n+1)2=(2n1-1)2-(2n1+1)2,∴Sk+1=Sk+ak+1=1-(2k1+1)2+(2k1+1)2-(2k1+3)2=1-[2(k+11)+1]2.由此可知,当n=k+1时,等式也成立.根据(1)、(2)可知,等式对任何n缀N+都…  相似文献   

17.
用数学归纳法证明不等式,特别是数列不等式,是一个行之有效的方法,也是中等数学中的一个基本方法,近些年高考试题中多次出现这类考题.运用这种方法证明不等式时,往往很多同学在证k到(k+1)的过程中卡了壳,断了思路,这是一种普遍现象.下面分析一下思路受阻的几种原因及转化策略.一、从k到(k+1)添项不足在从k到(k+1)的证明过程中,如果分析不透命题结构,就会造成添项不足,证明夭折.【例1】已知Sn=1+21+13+…+1n(n∈N*),用数学归纳法证明S2n&gt;1+2n(n≥2,n∈N*).思路受阻过程:(1)当n=2时,S22=1+21+31+41=1+1123&gt;1+22,命题成立.(2)设n=k(k≥3)时不等式成立,即S2k=1+21+31+…+21k&gt;1+2k,则当n=k+1时S2k+1=1+12+31+…+21k+2k1+1&gt;1+2k+2k1+1,要证明S2k+1&gt;1+k2+1,只须证1+2k+21k+1&gt;1+k2+1,即证2k1+1&gt;21.显然,当k≥2时这是不可能的,解题思路受到阻碍.受阻原因分析:∵Sn=1+21+31+…+1n,∴S2k+1=1+21+13+…+21k+2k1+1+2k1+2+…+...  相似文献   

18.
研究具有连续变量的非线性偏差分方程 [A(x+r,y) +A(x ,y+r) -aA(x ,y) ] k-(bA(x ,y) ) k+ ∑ui=1pi(x ,y)Ak(x-τi,y-σi) =0 ,其中pi(x ,y) ∈C(R+×R+,R+/ { 0 } ) ,u是正整数 ,k=c/d>1 ,c,d为奇数 ,a为非负实数 ,b为正实数 ,θ =b-a ,满足 0 <θ≤ 1 ,r,σi,τi∈R+,i=1 ,2 ,… ,u ,得到了保证方程的所有解都具有振动性的若干充分条件 .  相似文献   

19.
柯西不等式的再推广   总被引:1,自引:0,他引:1  
黄毅老师在文 [1]中给出了柯西不等式的一个变形及其推广 ,本文在此基础上作进一步的推广 .引理 1(赫尔德不等式 )已知 ai,bi ∈ R+ ,i = 1,2 ,… ,n且α +β =1,1)若αβ >0 ,则∑ni=1aαibβi ≤ ( ∑ni=1ai)α( ∑ni=1bi)β2 )若αβ <0 ,则∑ni=1aαibβi ≥ ( ∑ni=1ai) α( ∑ni=1bi) β引理 2 已知 xi,yi ∈ R+ ,i =1,2 ,… ,n1)若 r >1或 r <0 ,则∑ni=1xiyri ≥ ( ∑ni=1yi) r( ∑ni =1x 11 -ri ) 1 -r2 )若 0 相似文献   

20.
给出第1类stirling数与Bernou lli数的解析表示式S1(n,n)=1 n∈N+n-1S1(n,m)=(-1)n-m∑k2=n-mk1∑k1-1k2=n-m-1k2…∑kn-m-2-1kn-m-1=2kn-m-1∑kn-m-1-1kn-m=1kn-mn,m∈N+,n>mb1=12b2=1n!∑n-1i=1(-1)n-ii+1∑n-1k1=n-ik1∑k1-1k2=n-i-1k2…∑kn-i-2-1kn-i-1=2kn-i-1∑kn-i-1-1kn-i=1kn-i+1(n+1)!n∈N+,n≥2因此解决了它们的计算问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号