首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our research project was guided by the assumption that students who learn to understand phenomena in everyday terms prior to being taught scientific language will develop improved understanding of new concepts. We used web‐based software to teach students using a “content‐first” approach that allowed students to transition from everyday understanding of phenomena to the use of scientific language. This study involved 49 minority students who were randomly assigned into two groups for analysis: a treatment group (taught with everyday language prior to using scientific language) and a control group (taught with scientific language). Using a pre–post‐test control group design, we assessed students' conceptual and linguistic understanding of photosynthesis. The results of this study indicated that students taught with the “content‐first” approach developed significantly improved understanding when compared to students taught in traditional ways. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 529–553, 2008  相似文献   

2.
3.
4.
5.
6.
For more than half a century concerns about the ability of American students to compete in a global workplace focused policymakers' attention on improving school performance generally, and student achievement in science, technology, engineering, and mathematics (STEM) specifically. In its most recent form—No Child Left Behind—there is evidence this focus led to a repurposing of instructional time to dedicate more attention to tested subjects. While this meant a narrowing of the curriculum to focus on English and mathematics at the elementary level, the effects on high school curricula have been less clear and generally absent from the research literature. In this study, we sought to explore the relationship between school improvement efforts and student achievement in science and thus explore the intersection of school reform and STEM policies. We used school‐level data on state standardized test scores in English and math to identify schools as either improving or declining over three consecutive years. We then compared the science achievement of students from these schools as measured by the ACT Science exams. Our findings from three consecutive cohorts, including thousands of high school students who attended 12th grade in 2008, 2009, and 2010 indicate that students attending improving schools identified by state administered standardized tests generally performed no better on a widely administered college entrance exam with tests in science, math and English. In 2010, students from schools identified as improving in English scored nearly one‐half of a point lower than their peers from declining schools on both the ACT Science and Math exams. We discuss various interpretations and implications of these results and suggest areas for future research. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 804–830, 2012  相似文献   

7.
Recent curriculum design projects have attempted to engage students in authentic science learning experiences in which students engage in inquiry‐based research projects about questions of interest to them. Such a pedagogical and curricular approach seems an ideal space in which to construct what Lee and Fradd referred to as instructional congruence. It is, however, also a space in which the everyday language and literacy practices of young people intersect with the learning of scientific and classroom practices, thus suggesting that project‐based pedagogy has the potential for conflict or confusion. In this article, we explore the discursive demands of project‐based pedagogy for seventh‐grade students from non‐mainstream backgrounds as they enact established project curricula. We document competing Discourses in one project‐based classroom and illustrate how those Discourses conflict with one another through the various texts and forms of representation used in the classroom and curriculum. Possibilities are offered for reconstructing this classroom practice to build congruent third spaces in which the different Discourses and knowledges of the discipline, classroom, and students' lives are brought together to enhance science learning and scientific literacy. © 2001 John Wiley & Sons, Inc. J Res Sci Teach 38: 469–498, 2001  相似文献   

8.
科学教育:过去,现在和未来   总被引:4,自引:0,他引:4  
一百年来,现实的吁求,政治经济问题的直接充当了我们科学教育的思维起点,以至从过去到现在一直都没有形成健全的民族科学教育理念,使科学意识并没有深入民族文化心理之中,未来的科学教育必须在充分反思教育与科学自身处境的基础上,协调科学教育与社会发展的关系,处理好科学与人文、科学文化与民族心理、心智训练与知识掌握、普及与提高、尊重科学与唯科学主义之间的紧张与冲突,以谋求自身乃至民族的健康发展。  相似文献   

9.
10.
11.
12.
This paper sets out an argument and approach for moving beyond a primarily arts‐based conceptualization of cultural capital, as has been the tendency within Bourdieusian approaches to date. We advance the notion that, in contemporary society, scientific forms of cultural and social capital can command a high symbolic and exchange value. Our previous research [Archer et al. (2014) Journal of Research in Science Teaching 51, 1–30] proposed the concept of “science capital” (science‐related forms of cultural and social capital) as a theoretical lens for explaining differential patterns of aspiration and educational participation among young people. Here, we attempt to theoretically, methodologically, and empirically advance a discussion of how we might conceptualize science capital and how this might be translated into a survey tool for use with students. We report on findings from a survey conducted with 3658 secondary school students, aged 11–15 years, in England. Analysis found that science capital was unevenly spread across the student population, with 5% being classified as having “high” science capital and 27% “low” science capital. Analysis shows that levels of science capital (high, medium, or low) are clearly patterned by cultural capital, gender, ethnicity, and set (track) in science. Students with high, medium, or low levels of science capital also seem to have very different post‐16 plans (regarding studying or working in science) and different levels of self‐efficacy in science. They also vary dramatically in terms of whether they feel others see them as a “science person.” The paper concludes with a discussion of conceptual and methodological issues and implications for practice. © 2015 The Authors. Journal of Research in Science Teaching Published by Wiley Periodicals, Inc. J Res Sci Teach 52: 922–948, 2015.  相似文献   

13.
14.
15.
16.
17.
18.
19.
This study assessed the influence of a 3‐year professional development program on elementary teachers' views of nature of science (NOS), instructional practice to promote students' appropriate NOS views, and the influence of participants' instruction on elementary student NOS views. Using the VNOS‐B and associated interviews the researchers tracked the changes in NOS views of teacher participants throughout the professional development program. The teachers participated in explicit–reflective activities, embedded in a program that emphasized scientific inquiry and inquiry‐based instruction, to help them improve their own elementary students' views of NOS. Elementary students were interviewed using the VNOS‐D to track changes in their NOS views, using classroom observations to note teacher influences on student ideas. Analysis of the VNOS‐B and VNOS‐D showed that teachers and most grades of elementary students showed positive changes in their views of NOS. The teachers also improved in their science pedagogy, as evidenced by analysis of their teaching. Implications for teacher professional development programs are made. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 653–680, 2007  相似文献   

20.
在科学课程的教学中,利用科学史组织教学能极大地丰富科学课堂,对学生的科学素养的培养具有积极作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号