首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>我们把形如y=f[f(x)]或y=f[g(x)]的一类函数称为嵌套函数,把含有嵌套函数的函数问题称为嵌套函数问题.嵌套函数问题有两类基本形式:1.“f[f (x)]”型这一类型是同一个函数f(x)自身嵌套问题,求解这一类型的策略是:首先将“内层函数”换元,即设f(x)=t,然后根据题设条件解出相应t的值或范围,最后利用函数f(x)或利用函数y=f(x)与y=t的图像关系解得问题.  相似文献   

2.
利用f(x)g(x)=eg(x)lnf(x)(f(x)>0)对幂指函数的极限、微分和积分进行了探讨,获得了应用更广泛更灵活的几个结果:将分式型不定式的等价无穷小代换定理、无穷小比较定理和洛必达法则推广到幂指型不定式中;给出了幂指函数求导的四种方法;得到了一类幂指函数的积分定理。所得结果从理论上系统解决了幂指函数的极限、微分和积分的求解问题。  相似文献   

3.
文章讨论无穷积分∫_a(+∞)f(x)dx的被积函数f(x)当x→+∞时的极限情况。方法:利用函数f(x)在[a,+∞)上一致连续的一些性质、结论和一些新颖的实例。结果:给出了无穷积分∫_a(+∞)f(x)dx的被积函数f(x)当x→+∞时的极限情况。方法:利用函数f(x)在[a,+∞)上一致连续的一些性质、结论和一些新颖的实例。结果:给出了无穷积分∫_a(+∞)f(x)dx的被积函数极限limf(x)x→+∞的一些条件及其证明。结论:若无穷积分∫_a(+∞)f(x)dx的被积函数极限limf(x)x→+∞的一些条件及其证明。结论:若无穷积分∫_a(+∞)f(x)dx收敛时被积函数极限为零,必须附加一定的条件才能成立,这与数项级数和函数项级数收敛时一般项趋于零是有差别的。  相似文献   

4.
目的:讨论无穷积分integral from n=a to ( ∞)f(x)dx的被积函数f(x)当x→ ∞时的极限情况.方法:利用函数f(x)在[a, ∞)上一致连续的一些性质和结论.结果:给出了无穷积分integral from n=a to ( ∞)f(x)dx的被积函数极限lim/(x→ ∞)f(x)=0的一些条件及其证明.结论:无穷积分integral from n=a to ( ∞)f(x)dx收敛时被积函数极限xli→m ∞f(x)=0必须附加一定的条件下才能成立,这与数项级数和函数项级数收敛时一般项趋于零是不一致的.  相似文献   

5.
函数的单调性是函数最重要的性质之一,而利用导数解决函数的单调性问题,是近几年高考考查的重点和热点之一,也是学生感到比较棘手的一类问题.该类问题主要有两种类型:一是利用导数判断函数的单调性;二是由函数在某区间上的单调性求参数的取值范围.类型一利用导数判断函数的单调性解决此类问题的依据是:设函数f(x)在某个区间(a,b)内的导数为f’(x),则(1)若f’(x)>0,则函数f(x)在区间(a,b)内递增;  相似文献   

6.
利用f(x)^g(x)=e^g(x)lnf(x)(f(x)〉0)对幂指函数的微分和积分进行了探讨,获得了应用更广泛更灵活的几个结果:幂指函数求导的四种方法和一类幂指函数的积分定理。所得结果从理论上系统解决了幂指函数的微分和积分的求解问题。  相似文献   

7.
函数f(x)的原函数难以求出的情况下,如何求f(x)的定积分?如果函数f(x)满足一定的条件,则可通过转化的方法,求出函数f(x)的定积分的值,并给出相关定理及实例。  相似文献   

8.
有一类抽象函数问题 ,常把与抽象函数有关的等式作为条件 ,在高考试题中频繁出现 ,怎样利用好这些等式是解决此类问题的关键 .本文介绍处理这类问题的几种解题策略 .一、利用递推关系与抽象函数有关的等式看作递推式 ,利用其递推关系寻找新的等式 .例 1 已知 f ( x)是定义在正整数集上的函数 ,对任意正整数 x,都有 f ( x) =f ( x - 1) +f ( x +1) ,且f ( 1) =2 0 0 2 ,求 f ( 2 0 0 2 )解 :利用 f ( x) =f ( x - 1) +f ( x +1)的递推关系可知 :f ( x +1) =f ( x) +f ( x +2 ) ,和 f ( x +2 ) =f ( x+1) +f ( x +3)两等式联立得 :f ( x +3) …  相似文献   

9.
由函数单调性的定义可知:若函数y=f(x)在区间I上单调,且x1、x2∈I,则f(x1)=f(x2)-x1=x2.根据问题的特点,构造恰当的函数,利用以上性质可以解一类求值题.  相似文献   

10.
导数的应用非常广泛,在利用导数处理函数问题中,求参数取值范围是一类比较典型、比较重要的问题.1参数大于函数的最小值例1定义在R上的函数f(x)=ax3+bx2+cx+3,同时满足以下条件:1f(x)在(0,1)上是减函数,在(1,+])上是增函数;ofc(x)是偶函数;f(x)在x=0处的切线与直线y=x+2垂直.()求函数y=f(x)的解析式;(ò)设g(x)=4lnx-m,若存在x I[1,e],使g(x)相似文献   

11.
函数的解析式也叫表达式,是函数的三要素之一.在代数中求函数的解析式,尤其是运用函数的奇偶性、对称性、周期性求函数解析式是一类重要问题,仅举几例,供大家参考.一、利用函数性质求分段函数解析式例1已知的f(x)定义域为R,且对一切x∈R满足f(2 x)=f(2-x),f(7 x)=f(7-x)(1)若f(  相似文献   

12.
众所周知,对称性不论在定积分还是在重积分的计算中都起到了简化运算的作用.曲线积分和曲面积分作为定积分和二重积分的推广同样可以利用对称性来简化其计算.定理1:设曲线 l 是关于 y 轴对称的光滑曲线,l 的方程为:y=y(x).(-a≤x≤a)函数,f(x,y)在 l 上有定义且连续,那么,当,f(x,y)为 x 的奇函数时,f(x,y)ds=0当f(x,y)为 x 的偶函数时,  相似文献   

13.
不等式的证明方法有比较法、分析法、综合法、归纳法等等,但对于一类不等式,有时不如利用函数性质及图象来证明更显得直观形象。我们知道,若在含有字母的式子中,如若认定某一字母为自变量,而另一些字母看成是一定范围内的常数,那么不等式便成了以选定为自变量的那个字母的一元一次或一元高次不等式,进而可以以此字母为变量构成函数。因此,我们可利用函数的性质来证明某些不等式。 (一) 利用函数的单调性证明不等式大家知道,若函数y=f(x)定义在x∈[m,n]上(m0;同样,如若y=f(x)在x∈[m,n]上是单调递减函数,又f(n)≥0,那么y=f(x)在x∈(m,n)上恒有f(x)>0。根据此性质可证明如下的一些问题。  相似文献   

14.
在学习《函数》的过程中,我们常常会遇到关于函数f(x)、f(x+t)的某些问题.事实上,f(x+t)是一个复合函数,用g(x)代替x+t,则f(x+t)=f(g(x)).复合函数是一类更为抽象、复杂的函数,是教学的难点,也是学生感到棘手的问题.那么函  相似文献   

15.
一、填空题1.函数f(x)=11n(x+2)+4-x2的定义域是。2.函数f(x)=1nx+11-x的定义域是。3.若函数f(x)=5exx<03x+ax≥0在点x=0处连续,则a=。4.设f(x)=exx≥0xk+1x<0在x=0处可导,则k=。5.已知f(x)在x=0处可导,则limx→0f(2x)-f(0)x=。6.若y=xx,则dydx。7.若连续函数f(x)在区间a,b内恒有f′(x)<0,则此函数在a,b上的最大值是。8.设f(x)=x2-3x+2,则f(f′(x))=。9.极限limx→0∫x0costdtx=。10.limx→0∫x0sintdtx2=。11.∫exf′exdx=。12.已知函数f(x)的一个原函数是arctan2x,则f(x)=。13.根据定积分的几何意义,∫3-39-x2dx=。14.广义积分∫+∞adxxpa…  相似文献   

16.
《数理天地》高中版99年6期发表的《速解一类周期题》一文主张,对于形如f(x)=f(x)+f2(x)的函数的周期,可以利用下列结论快速求解:若f1(x)的周期是T1,f2(x)的周期是T2,则函数f(x)=f1(x)+f2(x)的周期是T1、T2的最小公倍数(以上指的均是最小正周期),可惜,这个结论在不少情况下是失败的,请看.  相似文献   

17.
模特函数是指以函数或某一公式为原型,将函数的本质属性抽取出来而得到的一类抽象函数.如以 f(x)=cosx 为模型可得:若定义在(-∞, ∞)上的连续函数 f(x),对任意实数x,y,都有 f(x) f(x)=2f((x y)/2)·  相似文献   

18.
模特函数是指以函数或某一公式为原型,将函数的本质属性抽取出来而得到的一类抽象函数.如以f(x)=cosx为模型可得:若定义在(-∞, ∞)上的连续函数f(x),对任意实数x,y,都有f(x) f(y)=2f(x2 y)·f(x2-y),且f(0)=1,且f(x)是周期函数,且f(x)为偶函数.本文例析模特函数问题的求解策略  相似文献   

19.
利用单调函数f(x)的积分性质,给出了n∑k=1f(k)的一个上界与下界公式及其应用.  相似文献   

20.
对于一类二元函数方程(是指函数方程中表示未知函数的字母有两个)f(w(x,y))=R(f(x)、f(y))(1)的可微解的一个求法。这种解法是把函数方程(1)的形式解  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号