首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题 若 b>a>0 , bsin2 α=asin2 β,bcos2 α acos2 β=b,α,β∈ (0 ,π2 ) .求证 :α 2 β=π2 .此题常规的证明方法是利用已知条件先证明 cos(α 2 β) =0 (或 sin(α 2 β) =1 ) ,再利用余弦函数值等于 0 (或正弦函数值等于1 )的角 α 2 β在 (0 ,3π2 )内只有 π2 来证 .事实上 ,若联想所给条件的几何意义 ,便可构造等腰三角形 ,巧妙地加以证明 .证明 ∵ bcos 2α acos 2β=b,∴acos2 β=b(1 - cos2 α) >0 .由 β∈ (0 ,π2 ) ,知 2 β∈ (0 ,π2 ) .由 bcos 2α=b- acos 2β>a(1 - cos 2β)图 1>0及 α∈ (0 ,π2 )知 2 α∈…  相似文献   

2.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )= 1 ,那么 x+ y=0 .文 [1 ]给出了此题的一种证法 ,本文再给出此题的两种换元证法 ,然后给出一个新命题 .证法 1 设 x=tanα,y=tanβ,其中 α,β∈ ( - π2 ,π2 ) ,则由条件知 ,( tanα+ secα) ( tanβ+ secβ) =1 ( sinα+ 1 ) ( sinβ+ 1 ) =cosαcosβ sinα+sinβ+ 1 =cos(α+β) 2 sinα+β2 cosα-β2 +1 =1 - 2 sin2 α+β2 sin α+β2 ( sin α+β2 +sinπ-α+β2 ) =0 sin α+β2 sin 2β+π4 ·cos2α-π4 =0 .又由 α,β∈ ( - π2 ,π2 ) ,知…  相似文献   

3.
一、求角的范围例1若sinθ cosθ >0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限解∵sinθcosθ>0,∴sinθcosθsin2θ+cos2θ>0,∴tanθtan2θ+1>0,∴tanθ >0.选B.二、求值例2已知tan(π4+α)=2,求12sinαcosα+cos2α的值.解∵tan(α +π 4)=2,∴1+tanα1-tanα =2,tanα=1 3.∴ 12sinα cosα +cos2α=sin2α +cos2α2sinα cosα +cos2α=tan2α +12tanα +1=2 3.例3已知6sin2α+sinαcosα-2cos2α=0,α 缀[π2,π],求sin(2α+π3)的值.解显然cosα≠0,∴原条件可化为6tan2α+tanα-2=0,解得tanα=-2…  相似文献   

4.
定理 已知0 <α<π2 ,0 <β<π2 ,若α+β<π2 ,则tanαtanβ≤tan2 α+β2 ;(1)若α+β>π2 ,则tanαtanβ≥tan2 α+β2 . (2 )当且仅当α=β时,上述两式取等号.证明 tanαtanβ-tan2 α+β2=sinαsinβcosαcosβ- 1-cos(α+β)1+cos(α+β)=cos(α- β)cos(α+β) -cos(α+β)cosαcosβ[1+cos(α+β) ]=- cos(α+β) [1-cos(α- β) ]cosαcosβ[1+cos(α+β) ].∵0 <α<π2 ,0 <β<π2 .∴cosα>0 ,cosβ>0 ,1+cos(α+β) >0 ,1-cos(α- β)≥0 ,从而可知,当α+β<π2 时,tanαtanβ-tan2 α+β2 ≤0 ,即(1)成立;当α+β>π2 时,tan…  相似文献   

5.
例1(2004年全国高考文史类试题)设α(0,π2),若sinα=35,则2姨cos(α+π4)=()A.75B.15C.-72D.4解∵α(0,π2),sinα=35,∴cosα=45.∴2姨cos(α+π4)=2姨(cosαsinπ4-sinαcosπ4)=cosα-sinα=45-35=15,故选B.例2(2004年全国高考广西卷)已知α为锐角,且tanα=12,求sin2αcosα-sinαsin2αcos2α的值.解sin2αcosα-sinαsin2αcos2α=sinα(2cos2α-1)sin2αcos2α=sinαcos2αsin2αcos2α=sinαsin2α=12cosα.由α为锐角及tanα=12,得1cos2α=sin2α+cos2αcos2α=tan2α+1=54.∴1cosα=5姨2.∴sin2αcosα-sinαsin2αcos2α=1…  相似文献   

6.
三角恒等式 :cosα cos(1 2 0°-α) cos(1 2 0° α) =0 ,sinα- sin(1 2 0°- α) sin(1 2 0° α) =0 .其中 α为任意角 .文 [1 ]、[2 ]先后给出了这两个恒等式的统一证法 .其实 ,笔者得以下证法更显朴素自然 ,简捷明快 !证明 记P=cosα cos(1 2 0°- α) cos(1 2 0° α) ,Q=sinα- sin(1 2 0°-α) sin(1 2 0° α) .则  P2 Q2 =3 2 [cosαcos(1 2 0°-α)- sinαsin(1 2 0°- α) ] 2 [cosαcos(1 2 0° α) sinαsin(1 2 0° α) ] 2 [cos(1 2 0°- α)·cos(1 2 0° α) - sin(1 2 0°- α) sin(1 2 0° …  相似文献   

7.
题目:已知sin2α=a,cos2α=b,则 tan(α+π4)的值是(  ) (A)b1-a(B)1+ab (C)1+a+b1+b-a(D)a-b+1a+b-1 解法(一):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=cos2α-sin2α(cosα-sinα)2=cos2α1-sin2α =b1-a.故选(A) 解法(二):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=(sinα+cosα)2cos2α-sin2α=1+sin2αcos2α …  相似文献   

8.
改换证法 推广命题   总被引:2,自引:1,他引:2  
例 设 α,β∈ (0 ,π2 ) ,sin(α β) =sin2 α sin2 β.求证 :α β=π2 .(第 1 7届全苏数学竞赛题 )这道赛题的题设与结论都很简单 ,但其证明却并不简单 .贵刊在《处理角问题的几种数学思想方法》一文中 (2 0 0 0 ,1 2 ) ,是用分类讨论的思想方法证明结论的 .该题若改用柯西不等式来证 ,不但证法简捷 ,而且可得到不少新的命题 .本文先证明 ,后介绍新命题 .证  (1 ) α=β,结论显然成立 ,且 sin(α β) =sin2 α sin2 β α β=π2 .(2 )α≠β,得题设式平方 ,应用柯西不等式等号成立的充要条件 ,即得sin2 (α β) =(sinαcosβ c…  相似文献   

9.
原题1在△ABC中,对λ≥1,求证:tan(A/λ)+2tan(B/2λ)+3tan(C/3λ)≥6tan(π/6λ),当且仅当A=π/6,B=π/3时等号成立.原证明如下:当α>0,β>0且α+β<π时,有:tanα+tanβ=(sinαcosβ+cosαsinβ)/(cosαcosβ)=(sin(α+β))/(cosαcosβ)  相似文献   

10.
性质 若 sinα与 cosα的一次齐次式asinα+ bcosα满足 asinα1 + bcosα1 =asinα2+ bcosα2 =0 (α1 ≠ kπ+α2 ,k∈ Z) ,则 asinα+bcosα恒等于零 .证明 由条件 asinα1 + bcosα1 =0 ,asinα2 + bcosα2 =0 ,∵α1 -α2 ≠ kπ( k∈ Z) ,∴ sinα1 cosα2 - cosα1 sinα2 =sin( α1 - α2 )≠ 0 ,∴上述关于 a,b的齐次线性方程组只有零解 a=b=0 ,∴ asinα+bcosα恒等于零 .利用上述性质 ,可以使一类三角函数式的求值、化简、证明问题 ,获得简明的解法 ,下面略举几例 ,以示说明 .例 1 求证 :sin( 5π6 - φ) + sin( 5π6 + φ) …  相似文献   

11.
题已知sin2α=a,cos2α=b,求tan(α+π/4)的值.解法1 用正切半角公式,得解法2 使用正切的另一个半角公式,得  相似文献   

12.
在解题时,可能会遇到(有时需构造)各项次数相同的式子,我们称之为齐次式,下面举例说明齐次式的应用. 1.求三角函数值 例1 已知6sin2α sinαcosα-2cos2α=0,α∈(π/2,π),求sin(2α π/3)的值. (04年湖北卷) 分析 方程左端为齐次式,由已知条件可知 cosα≠0,则α≠π/2,所以 原方程可化为 6tan2α tanα-2=0,所以 (3tanα 2)(2tanα-1)=0.  相似文献   

13.
题目已知M,N为直线3x+4y-10=0上两点,O为坐标原点,若∠MON=π/3,则ΔMON的周长最小值为______.解法1:如图1,作OH⊥MN于H,则OH=d=10/√32+42=2,设∠HOM=α,则∠HON=π/3-α,OM=2/cosα,ON=2/cos(π/3-α)HM=2tanα,HN=2tan(π/3-α),于是ΔOMN的周长l=2/cosα+2/cos(π/3-α)+2tanα+2tan(π/3-α).  相似文献   

14.
解三角题要注意挖掘隐含条件   总被引:1,自引:0,他引:1  
在解决三角函数问题中,学生往往会因忽视题中的隐含条件而导致错误.下面结合几例学生易错题进行说明.例1已知α∈(0,π),且sinα cosα=12,则cos2α的值为()(A)74(B)-74(C)±74(D)-14错解把sinα cosα=12两边平方,得1 sin2α=14,∴sin2α=-34.又α∈(0,π),∴2α∈(0,2π).∴c  相似文献   

15.
题目已知cos(α+π/4)=3/5,2/π≤α<3/2π求cod(2α+π/4) 解法1由cos(α+π/4)=3/5,可得cosα-sinα=3√2/5…(1)再由sin2α+cos2α-1,得:2cos2α-6√2/5cosα-7/25-0,解得cosα=-√2/10或7√2/10,又π/2≤α<3/2π,所以cosα=-√2/10,sinα=-7√2/10,所以cos2α=cos2α-sin2α=-24/25,sin2α=7/25所以cos(2α+π/4)=√2/2(cos2α-sin2α)=-31√2/50.  相似文献   

16.
1.(全国)设α∈(0,π/2),若sinα=3/5,则cos(α π/4)=( ) (A)7/5 (B)1/5 (c)-7/5 (D)-1/5 2.(广西)已知α为锐角,且tanα=1/2,求sin2αcosα-sina/sin2αcos2α的值. 3.(广东)已知α,β,γ成公比为2的等比数列(α∈[0,2π]),且sinα,sinβ,sinγ也成等比  相似文献   

17.
一些三角恒等式在证明代数问题方面有着广泛的应用 .下面介绍几种中学数学中常见的代换法 ,供同行和读者参考 .一、若m n=1,m、n >0 ,可令m =sin2 α ,n =cos2 α .例 1 已知x、y >0 ,且x y=1,A =ax by ,B =ay bx ,试比较AB与ab的大小 .解 令x=cos2 α ,y=sin2 α ,则AB -ab =(ax by) (ay bx) -ab=(a2 b2 )xy ab(x2 y2 ) -ab=(a2 b2 )cos2 αsin2 α ab(cos4 α  sin4 α) -ab=(a-b) 2 cos2 αsin2 α≥ 0 ,∴AB ≥ab .二、若m2 n2 =1,可令m =sinα ,n=cosα ,例 2 设a2 b2 =1,x2 y2 =1,求ax by的取值范围 .解 令a =sinα…  相似文献   

18.
题目已知sinθ+cosθ=51,θ∈(0,π),则cotθ=·这是1994年的一道高考题·该题解法颇多,除了通常的平方法,求sinθ、cosθ值外,本文再给出其它几种转化法·解法1:(定义法)设sinθ=5y,cosθ=5x,则有y5+5x=51,(5y)2+(5x)2=1·化为y2-y-12=0·由θ∈(0,π),知y>0,x<0,可解得y=4,x=-3·从而cotθ=yx=-43·解法2:(辅助式)设sinθ-cosθ=m,与sinθ+cosθ=51联立,两式平方后相加,可得m2=4259·由题设可知θ∈(2π,34π),则sinθ>cosθ,故m=57·再将sinθ-cosθ=75与sinθ+cosθ=51相加减,得sinθ=54,cosθ=-53,从而cotθ=-43·解法3:(巧设等差数列)…  相似文献   

19.
数学问答     
1.已知0<α<π4,β为f(x)=cos2x π8的最小正周期,a=tanα 4β,-1,b=(cosα,2),且a·b=m,求2cosc2oαs αs-ins2i(nαα β)的值.(yuodaowei@163.com)解答:由β为f(x)=cos2x 8π的最小正周期,得β=π.因a·b=m,又a·b=cosα·tanα 4β-2,所以cosα·tanα 4β=m 2.因0<α<4π,  相似文献   

20.
对于求形如函数 y=x px( p >0 )型的最值问题 ,如果我们能形似联想到三角公式tanα 1tanα =2sin2α,便会考虑实施三角代换x =ptanα ,使其转化成三角函数问题 .该代换架设了这类函数三角化的一座“桥” ,从而为该问题的求解提供了又一解题新通途 .例 1 求函数 y=x2 7x2 4的最小值 .解 因为 y =x2 4 3x2 4,x2 4≥ 2 ,所以可设 x2 4 =3tanα(arctan2 33 ≤α <π2 ) ,所以 y =3tanα 3tanα =2 3sin2α.因为 π2 <2arctan2 33 ≤ 2α <π ,所以 0 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号