共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
例1 解不等式6-5x≥12-3x. 错解 移项得-5x 3x≥12-6合并同类项得,-2x≥6两边同除以-2得x≥-3. 相似文献
6.
7.
不等式的同向可加性即:若a〉b、c〉d,则a+c〉b+d.此不等式的性质只具有单向性,即a〉b、c〉d是a+c〉b+d成立的充分条件,而不是必要条件. 相似文献
8.
1 准确理解不等式的基本性质,不断深化不等式的基础知识
中学数学教材中,依次贯穿了一元一次不等式、一元二次不等式、分式不等式、无理不等式、指数不等式、对数不等式、三角不等式,它们都有各自不同的特点和性质.不等式的核心问题是同解变形,而不等式的性质是不等式变形的理论依据,所以,深化理解不等式的性质是学好不等式知识的前提. 相似文献
9.
朱荣 《中学生数理化(高中版)》2007,(2):10-11
导数作为一种工具,在解决数学问题时极为方便,尤其是利用导数解决与函数有关的一些问题,在近几年的高考中时有出现.同学们在学习过程中由于概念不清.经常会出现一些错误. 相似文献
10.
黎学庚 《中学数学研究(江西师大)》2006,(5):48-49,F0004
“导数”已成为近年高考数学命题的热点、重点.但是,由于学生在“导数”的学习过程中因概念等理解不透彻而导致的错误情形也时常发生.本文针对学生中的错解进行归类剖析. 相似文献
11.
在高三数学教学中,经常看到一些错解,心头常有一种不吐不快的感觉.对错误的全方位透视,能更加深化我们对正确的结论或解决问题的过程的理解,如果我们对其相关信息掌握得越多,越有利于我们看清问题的本质或要害.行为主义理论认为,学习的过程是从试误、纠错再到正确的过程.如果我们能正确科学地发现错误的原因,再辅之以相应的对策,对学生的数学学习有着重要的意义.出于这样的考虑,现将高中数学中一些典型的错解辑录如下,并加以"诊断剖析",以期对同学们的学习有所帮助. 相似文献
12.
13.
陈志辉 《中学生数理化(高中版)》2005,(12):9-9
例1如图,正方体ABCD-A1B1C1D1的棱长为a,M、N分别是棱AA1和CC1上的动点,且AM=C1N.求证:四边形MBND1是平行四边形. 相似文献
14.
徐生根 《数学学习与研究(教研版)》2007,(4):12-12,35
平方根和立方根是数学中最基础、最重要的概念之一,由于同学们对他们的定义、性质理解不透,造成这样或那样的错误,现举例说明。 相似文献
15.
1 因忽视斜率不存在的情况而致错
例1已知直线l1:(m+1)x+(2m-1)y=3与l2:(3m-1)x-(2m^2-11m+5)y=5平行,求m的值。 相似文献
16.
有关函数问题,历来就是中考的重要考点。有些问题看似不难,但若数学概念模糊,掌握知识不够全面,或粗心大意忽视隐含条件,或考虑问题不周密,加上思维定式的影响,就会产生错误的理解,形成错误的判断,导致错误的结论。现略举几例加以剖析:例1.已知abc≠0并且c/a b=a/b c=b/c a=1/2p,那么一次函数y=px-P的图象一定经过____象限。(泰州市中考题)错解:由等比定理,得1/2p=a b c/2(a b c)=1/2从而p=1故直线y=x-1一定经过一、三、四象限剖析:这是由于受等比定理形式这一思维定式的影响,误以为只能是a b c≠0。事实上,当a b c=0时,a b=-c,1/2p=c/-c=-… 相似文献
17.
不等式(组)是初中代数的重要内容,理解不等式(组)的解与解集的意义,灵活运用不等式的基本性质,是正确解决不等式(组)问题的关键,同学们在解决这部分问题时,往往会出现一些错误,现将易出现的错误归类剖析如下。以帮助同学们提高认识,不犯类似的错误。 相似文献
18.
一、忘记改变不等号的方向
例1 解不等式3(x-1)≤4x+10.
错解:去括号,得3x-3≤4x+10.
移项合并同类项,得-x≤13.
把系数化为1,得x≤-13. 相似文献
19.
侯明辉 《语数外学习(初中版)》2007,(4X):26-29
一元二次方程是九年级数学中的重要内容之一.在解题时,如果我们对概念掌握不好,理解不透,思考不周密,就容易出现这样或那样的错误.一元二次方程常见的错解主要表现为以下几个方面:[第一段] 相似文献
20.
七年级同学初学解一元一次方程时,常会出现这样或那样的错误,我整理了在教学过程中学生常犯的几种错误加以分析,希望对同学们的学习有所启示。 相似文献