首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Science education research, reform documents and standards include scientific argumentation as a key learning goal for students. The role of the teacher is essential for implementing argumentation in part because their beliefs about argumentation can impact whether and how this science practice is integrated into their classroom. In this study, we surveyed 42 middle school science teachers and conducted follow-up interviews with 25 to investigate the factors that teachers believe impact their argumentation instruction. Teachers responded that their own learning goals had the greatest impact on their argumentation instruction while influences related to context, policy and assessment had the least impact. The minor influence of policy and assessment was in part because teachers saw a lack of alignment between these areas and the goals of argumentation. In addition, although teachers indicated that argumentation was an important learning goal, regardless of students' backgrounds and abilities, the teachers discussed argumentation in different ways. Consequently, it may be more important to help teachers understand what counts as argumentation, rather than provide a rationale for including argumentation in instruction. Finally, the act of trying out argumentation in their own classrooms, supported through resources such as curriculum, can increase teachers' confidence in teaching argumentation.  相似文献   

2.
徐学福 《教育科学》2006,22(2):20-23
根据教学论,科学教学中的“探究”可有三层含义:作为教学目标,指学生应掌握的科学探究技能,要理解的科学探究特性;作为教学原则,指激发学生积极探究未知、主动建构意义的基本教学要求;作为教学方法,指学生在教师指导下所采用的类似科学探究过程的学习方式或程序。  相似文献   

3.
This study investigated how professional development featuring evidence‐based customization of technology‐enhanced curriculum projects can improve inquiry science teaching and student knowledge integration in earth science. Participants included three middle school sixth‐grade teachers and their classes of students (N = 787) for three consecutive years. Teachers used evidence from their student work to revise the curriculum projects and rethink their teaching strategies. Data were collected through teacher interviews, written reflections, classroom observations, curriculum artifacts, and student assessments. Results suggest that the detailed information about the learning activities of students provided by the assessments embedded in the online curriculum motivated curricular and pedagogical customizations that resulted in both teacher and student learning. Customizations initiated by teachers included revisions of embedded questions, additions of hands‐on investigations, and modifications of teaching strategies. Student performance improved across the three cohorts of students with each year of instructional customization. Coupling evidence from student work with revisions of curriculum and instruction has promise for strengthening professional development and improving science learning. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1037–1063, 2010  相似文献   

4.
5.
6.
There exists a general consensus in the science education literature around the goal of enhancing learners' views of nature of science (NOS). An extensive body of research in the field has highlighted the effectiveness of explicit NOS instructional approaches in improving learners' NOS views. Emerging research has suggested that engaging learners in argumentation may aid in the development of their NOS views, although this claim lacks empirical support. This study assessed the influence of a science content course incorporating explicit NOS and argumentation instruction on five preservice primary teachers' views of NOS using multiple sources of data including questionnaires and surveys, interviews, audio‐ and video‐taped class sessions, and written artifacts. Results indicated that the science content course was effective in enabling four of the five participants' views of NOS to be improved. A critical analysis of the effectiveness of the various course components led to the identification of three factors that mediated the development of participants' NOS views during the intervention: (a) contextual factors (context of argumentation, mode of argumentation), (b) task‐specific factors (argumentation scaffolds, epistemological probes, consideration of alternative data and explanations), and (c) personal factors (perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, durability and persistence of pre‐existing beliefs). The results of this study provide evidence to support the inclusion of explicit NOS and argumentation instruction as a context for learning about NOS, and promote consideration of this instructional approach in future studies which aim to enhance learners' views of NOS. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1137–1164, 2010  相似文献   

7.
One of the factors affecting students' learning in science is their existing knowledge prior to instruction. The students' prior knowledge provides an indication of the alternative conceptions as well as the scientific conceptions possessed by the students. This study is concerned primarily with students' alternative conceptions and with instructional strategies to effect the learning of scientific conceptions; i.e., to effect conceptual change from alternative to scientific conceptions. The conceptual change model used here suggests conditions under which alternative conceptions can be replaced by or differentiated into scientific conceptions and new conceptions can be integrated with existing conceptions. The instructional strategy and materials were developed for a particular student population, namely, black high school students in South Africa, using their previously identified prior knowledge (conceptions and alternative conceptions) and incorporate the principles for conceptual change. The conceptions involved were mass, volume, and density. An experimental group of students was taught these concepts using the special instructional strategy and materials. A control group was taught the same concepts using a traditional strategy and materials. Pre- and posttests were used to assess the conceptual change that occurred in the experimental and control groups. The results showed a significantly larger improvement in the acquisition of scientific conceptions as a result of the instructional strategy and materials which explicitly dealt with student alternative conceptions.  相似文献   

8.
Developing scientific literacy about water systems is critical for K-12 students. However, even with opportunities to build knowledge about the hydrosphere in elementary classrooms, early learners may struggle to understand the water cycle (Forbes et al., 2015 ; Gunckel et al., 2012 ; Zangori et al., 2015 ; Zangori et al., 2017 ). Scientific modeling affords opportunities for students to develop representations, make their ideas visible, and generate model-based explanations for complex natural systems like the water cycle. This study describes a comprehensive evaluation of a 5-year, design-based research project focused on the development, implementation, revision, and testing of an enhanced, model-centered version of the Full Option Science System (FOSS) Water (2005) unit in third grade classrooms. Here, we build upon our previous work (Forbes et al., 2015 a; b; Vo et al., 2015 ; Zangori et al., 2015 ; Zangori et al., 2017 ) by conducting a comparative analysis of student outcomes in two sets of classrooms: (1) one implementing the modeling-enhanced version of the FOSS Water unit developed by the research team (n = 6), and 2) another using the standard, unmodified version of the same curricular unit (n = 5). Results demonstrate that teachers in both conditions implemented the two versions of the curriculum with relative fidelity. On average, students exposed to the modeling-enhanced version of the curriculum showed greater gains in their model-based explanations for the hydrosphere. Engagement in scientific modeling allowed students to articulate hydrologic phenomena by (1) identifying various elements that constitute the hydrosphere, (2) describing how these elements influenced the movement of water in the hydrosphere, and (3) demonstrating underlying processes that govern the movement of water in the hydrosphere.  相似文献   

9.
In this rejoinder, I first provide a more detailed account of the discourse-focused professional development activities facilitated as part of the SMIT’N program, specifically addressing issues raised by van Zee with regard to the institute’s overall format, goals and development strategies. Next, I resort to Peter Medawar’s metaphorical view of inquiry as scientific storytelling to reflect about Bencze’s expressed opposition to “politely guided quasi-inductive science inquiry instruction” and highlight the need for science educators to give more careful consideration to oral classroom discourse. I then conclude by describing how guided science inquiry teaching can be conceived in terms of the theoretical notion of negative politeness.  相似文献   

10.
To understand students’ argumentation abilities, there have been practices that focus on counting and analyzing argumentation schemes such as claim, evidence, warrant, backing, and rebuttal. This analytic approach does not address the dynamics of epistemic criteria of children’s reasoning and decision-making in dialogical situations. The common approach also does not address the practice of argumentation in lower elementary grades (K–3) because these children do not master the structure of argumentation and, therefore, are considered not ready for processing argumentative discourse. There is thus little research focusing on lower elementary school students’ argumentation in school science. This study, drawing on the societal-historical approach by L. S. Vygotsky, explored children’s argumentation as social relations by investigating the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children. The findings show (a) students’ capacity for connecting claim and evidence/responding to the burden of proof and critical move varies and (b) that teachers play a significant role to emphasize the importance of evidence but experience difficulties removing children’s favored ideas during the turn taking of argumentative dialogue. The findings on the nature of dialogical reasoning and teacher’s role provide further insights about discussions on pedagogical approaches to children’s reasoning and argumentation.  相似文献   

11.
Contextualizing science instruction involves utilizing students' prior knowledge and everyday experiences as a catalyst for understanding challenging science concepts. This study of two middle school science classrooms examined how students utilized the contextualizing aspects of project‐based instruction and its relationship to their science learning. Observations of focus students' participation during instruction were described in terms of a contextualizing score for their use of the project features to support their learning. Pre/posttests were administered and students' final artifacts were collected and evaluated. The results of these assessments were compared with students' contextualizing scores, demonstrating a strong positive correlation between them. These findings provide evidence to support claims of contextualizing instruction as a means to facilitate student learning, and point toward future consideration of this instructional method in broader research studies and the design of science learning environments. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 79–100, 2008  相似文献   

12.
In this study, we analyzed the quality of students' written scientific explanations found in notebooks and explored the link between the quality of the explanations and students' learning. We propose an approach to systematically analyzing and scoring the quality of students' explanations based on three components: claim, evidence to support it, and a reasoning that justifies the link between the claim and the evidence. We collected students' science notebooks from eight science inquiry‐based middle‐school classrooms in five states. All classrooms implemented the same scientific‐inquiry based curriculum. The study focuses on one of the implemented investigations and the students' explanations that resulted from it. Nine students' notebooks were selected within each classroom. Therefore, a total of 72 students' notebooks were analyzed and scored using the proposed approach. Quality of students' explanations was linked with students' performance in different types of assessments administered as the end‐of‐unit test: multiple‐choice test, predict‐observe‐explain, performance assessment, and a short open‐ended question. Results indicated that: (a) Students' written explanations can be reliably scored with the proposed approach. (b) Constructing explanations were not widely implemented in the classrooms studied despite its significance in the context of inquiry‐based science instruction. (c) Overall, a low percentage of students (18%) provided explanations with the three expected components. The majority of the sample (40%) provided only claims without any supporting data or reasoning. And (d) the magnitude of the correlations between students' quality of explanations and their performance, were all positive but varied in magnitude according to the type of assessment. We concluded that engaging students in the construction of high quality explanations may be related to higher levels of student performance. The opportunities to construct explanations in science‐inquiry based classrooms, however, seem to be limited. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 583–608, 2010  相似文献   

13.
Most science educators advocate the importance of hands-on activities for learning in science. However, little research has been directed at understanding the students' orientations toward phenomena and the ways in which these orientations influence the learning experience. Through microanalyses of videotape data of a summer science camp for elementary school children, we characterize students' orientations when exploring natural phenomena as modes of engagement. The six frequently observed orientations toward phenomena include exploration mode (to find out about the object and study its basic properties), engineering mode (a focus on making something happen), pet care mode (a personal connection focused on nurturing), procedural mode (an imitation and step-following orientation), performance mode (soliciting attention using the phenomenon as a prop), and fantasy mode (an imaginative play activity which builds on some aspect of the phenomena). These modes of engagement helped provide personal contexts in which the students' interactions with phenomena took shape, and these modes were arguably as important an influence on personal contexts as other conceptual or contextual influences. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
We investigated biology instruction—using a generic framework of scientific reasoning and argumentation (SRA) with eight epistemic activities—on how to foster student learning in biological literacy which had not been clarified in previous studies. Our analysis of videotaped biology lessons and student achievement showed varying frequencies in using these activities and their effects on achievement. Those students taught with more epistemic activities had higher achievement. We believe that the SRA framework can be a worthwhile methodical tool for teaching biology to foster student learning. Therefore, we draw practically orientated implications for educational research, practitioners, teacher educators, and curriculum developers.  相似文献   

15.
16.
17.
This article describes views about the nature of science held by a small sample of science students in their final year at the university. In a longitudinal interview study, 11 students were asked questions about the nature of science during the time they were involved in project work. Statements about the nature of science were characterized and coded using a framework drawing on aspects of the epistemology and sociology of science. The framework in this study has three distinct areas: the relationship between data and knowledge claims, the nature of lines of scientific enquiry, and science as a social activity. The students in our sample tended to see knowledge claims as resting solely on empirical grounds, although some students mentioned social factors as also being important. Many of the students showed significant development in their understanding of how lines of scientific enquiry are influenced by theoretical developments within a discipline, over the 5–8 month period of their project work. Issues relating to scientists working as a community were underrepresented in the students' discussions about science. Individual students drew upon a range of views about the nature of science, depending on the scientific context being discussed. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 201–219, 1999  相似文献   

18.
This study examined the outcomes of a unit that integrates explicit teaching of general reasoning patterns into the teaching of a specific science content. Specifically, this article examined the teaching of argumentation skills in the context of dilemmas in human genetics. Before instruction only a minority (16.2%) of the students referred to correct, specific biological knowledge in constructing arguments in the context of dilemmas in genetics. Approximately 90% of the students were successful in formulating simple arguments. An assessment that took place following instruction supported the conclusion that integrating explicit teaching of argumentation into the teaching of dilemmas in human genetics enhances performance in both biological knowledge and argumentation. An increase was found in the frequency of students who referred to correct, specific biological knowledge in constructing arguments. Students in the experimental group scored significantly higher than students in the comparison group in a test of genetics knowledge. An increase was also found in the quality of students' argumentation. Students were able to transfer the reasoning abilities taught in the context of genetics to the context of dilemmas taken from everyday life. The effects of metacognitive thinking and of changing students' thinking dispositions by modifying what is considered valuable in the class culture are discussed. © 2002 John Wiley & Sons, Inc. J Res Sci Teach 39: 35–62, 2002  相似文献   

19.
We conducted a laboratory‐based randomized control study to examine the effectiveness of inquiry‐based instruction. We also disaggregated the data by student demographic variables to examine if inquiry can provide equitable opportunities to learn. Fifty‐eight students aged 14–16 years old were randomly assigned to one of two groups. Both groups of students were taught toward the same learning goals by the same teacher, with one group being taught from inquiry‐based materials organized around the BSCS 5E Instructional Model, and the other from materials organized around commonplace teaching strategies as defined by national teacher survey data. Students in the inquiry‐based group reached significantly higher levels of achievement than students experiencing commonplace instruction. This effect was consistent across a range of learning goals (knowledge, reasoning, and argumentation) and time frames (immediately following the instruction and 4 weeks later). The commonplace science instruction resulted in a detectable achievement gap by race, whereas the inquiry‐based materials instruction did not. We discuss the implications of these findings for the body of evidence on the effectiveness of teaching science as inquiry; the role of instructional models and curriculum materials in science teaching; addressing achievement gaps; and the competing demands of reform and accountability. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:276–301, 2010  相似文献   

20.
This study explored Morine and Morine's (Discovery: A challenge to teachers. Englewood Cliffs, NJ: Prentice-Hall, 1973) assumptions regarding age and cognitive development of learners successfully utilizing two types of inquiry, specifically structured inductive and semi-deductive. Two groups of elementary school students from grades one, three and five were individually assessed on six conservation tasks and a multiplicative classification task. The two groups were instructed on two different science topics utilizing different inquiry strategies. Achievement data from topic specific tests were analyzed by an ANOVA technique. The results indicated that age made a significant difference on achievement for both inquiry strategies. The significant contributions were due to the differences between grade one and grades three and five. The differences between grade three and grade five were not significant. The effect of cognitive development was more noticeable in the less structured semi-deductive strategy in which four conservation tasks and the multiplicative classification tasks were significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号