首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this investigation was to compare valgus/varus knee angles during various jumps and lower body strength between males and females relative to body mass. Seventeen recreationally active females (age: 21.94 ± 2.59 years; height: 1.67 ± 0.05 m; mass: 64.42 ± 8.39 kg; percent body fat: 26.89 ± 6.26%; squat one-repetition maximum: 66.18 ± 19.47 kg; squat to body mass ratio: 1.03 ± 0.28) and 13 recreationally active males (age: 21.69 ± 1.65 years; height: 1.77 ± 0.07 m; mass: 72.39 ± 9.23 kg; percent body fat: 13.15 ± 5.18%; squat one-repetition maximum: 115.77 ± 30.40 kg; squat to body mass ratio: 1.59 ± 0.31) performed a one-repetition maximum in the squat and three of each of the following jumps: countermovement jump, 30 cm drop jump, 45 cm drop jump, and 60 cm drop jump. Knee angles were analysed using videography and body composition was analysed by dual-energy X-ray absorptiometry to allow for squat to body mass ratio and squat to fat free mass ratio to be calculated. Significant differences (P ≤ 0.05) were found between male and female one-repetition maximum, male and female squat to body mass ratio, and male and female squat to fat free mass ratio. Significant differences were found between male and female varus/valgus knee positions during maximum flexion of the right and left leg in the countermovement jump, drop jump from 30 cm, drop jump from 45 cm, and drop jump from 60 cm. Correlations between varus/valgus knee angles and squat to body mass ratio for all jumps displayed moderate, non-significant relationships (countermovement jump: r = 0.445; drop jump from 30 cm: r = 0.448; drop jump from 45 cm: r = 0.449; drop jump from 60 cm: r = 0.439). In conclusion, males and females have significantly different lower body strength and varus/valgus knee position when landing from jumps.  相似文献   

2.
Oxygen uptake (VO2) during treadmill exercise is directly related to the speed and grade, as well as the participant's body weight. To determine whether body composition also affects VO2 (ml.kg-1.min-1) during exercise, we studied 14 male body builders (M weight = 99 kg, SD = 7; M height = 180 cm, SD = 8; M body fat = 8%, SD = 3; M fat free mass = 91 kg, SD = 7) and 14 weight-matched men (M weight = 99 kg, SD = 9; M height = 179 cm, SD = 5; M body fat = 24%, SD = 5; M fat free mass = 73 kg, SD = 9). Percentage of body fat, t(13) = 8.185, p < .0001, and fat free mass, t(13) = 5.723, p < .0001, were significantly different between groups. VO2 was measured by respiratory gas analysis at rest and during three different submaximal workrates while walking on the treadmill without using the handrails for support. VO2 was significantly greater for the lean, highly muscular men at rest: 5.6 +/- 1 vs. 4.0 +/- 1 ml.kg-1.min-1, F(1, 26) = 21.185, p < .001; Stage 1: 1.7 mph/10%, 18.5 +/- 2 vs. 16.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 6.002, p < .05; Stage 2: 2.5 mph/12%, 26.6 +/- 3 vs. 23.1 +/- 2 ml.kg-1.min-1, F(1, 26) = 7.991, p < .01; and Stage 3:3.4 mph/14%, 39.3 +/- 5 vs. 33.5 +/- 5 ml.kg-1.min-1, F(1, 26) = 7.682, p < .01, body builders versus weight-matched men, respectively. However, net VO2 (i.e., exercise VO2 - rest VO2) was not significantly different between the two groups at any of the matched exercise stages. The findings from this study indicate that VO2 during weight-bearing exercise performed at the same submaximal workrate is higher for male body builders compared to that measured in weight-matched men and that which is predicted by standard equations. These observed differences in exercise VO2 appear to be due to the higher resting VO2 in highly muscular participants.  相似文献   

3.
The aims of this study were to assess the validity and reliability of body volume and percent body fat determined by sulphur hexafluoride dilution, using underwater weighing as the criterion method, and to determine the influence of the magnitude of body volume. Thirty-one healthy Japanese individuals aged 18-27 years (16 males: height 1.70 +/- 0.06 m, mass 64.8 +/- 7.7 kg; 15 females: height 1.60 +/- 0.05 m, mass 55.2 +/- 6.2 kg; mean +/- s) participated in the study. Sulphur hexafluoride dilution measures the concentration of sulphur hexafluoride gas in the chamber (BSF-200, Shimazu Corp.). Underwater weighing was performed five times using a weight scale (AD-6204, A&D) after residual volume had been determined (System9, Minato Medical Corp.). There were no significant differences in the mean between two trials for body volume, body density or percent body fat determined by sulphur hexafluoride dilution. The intra-class correlation coefficient of these variables ranged from 0.985 to 0.999. The results suggest that sulphur hexafluoride dilution is a reliable method for assessing body composition. There was no significant difference in body volume or percent body fat between sulphur hexafluoride dilution (males: 61.3 +/- 7.6 litres, 18.4 +/- 6.7%; females: 52.8 +/- 6.9 litres, 21.0 +/- 8.9%) and underwater weighing (males: 60.6 +/- 7.0 litres, 15.6 +/- 3.5%; females: 53.0 +/- 6.5 litres, 23.7 +/- 6.1%) and there was a high correlation between the two (r = 0.997, P < 0.05). A Bland-Altman plot of the difference between percent body fat estimated by underwater weighing and sulphur hexafluoride dilution versus average percent body fat by the two methods showed no systematic difference (mean difference = -0.12 +/- 6.6 kg). The upper and lower limits of agreement were 13.2% and -13.4%, respectively. Determination by sulphur hexafluoride dilution resulted in both over- and underestimations in body volume and the difference between the two body volumes (determined by underwater weighing and by sulphur hexafluoride dilution) was inversely proportional to the mean body volume by the two methods. This suggests that improvements need to be made to the device or to the technique to maintain a constant volume of sulphur hexafluoride in the chamber.  相似文献   

4.
Body mass index is a common proxy for proportion of body fat. However, body mass index may not classify youth similarly across ages and ethnicities. We used sex- and ethnic-specific receiver operating characteristic curves to determine how obesity classifications compared between body mass index and dual energy x-ray absorptiometry-based body fat percent. Male and female participants 9- to 18-years-old (n = 944; 487 female) were measured 1 to 13 times (1999–2012; 4,411 observations). Body mass index identified < 50% of those classified as obese from body fat percent. Specificity was 99.7%, and sensitivity was 35.8%. Using area under the curve and standard error values, body mass index performed significantly better for: Male versus female at 10 years, Asian versus European female except at 13-, 15-, and 16-years-old, Asian female versus male except at 10- and 15-years-old, and for European male versus female, 9- to 11-years-old (p < .05). Our findings provide evidence that users of body mass index should use caution when comparing body mass index across age, sex, and ethnicity.  相似文献   

5.
The aim of this study was to determine the effects of long-term professional golf participation on whole-body and regional bone mass and density. Dual-energy X-ray absorptiometry was performed on 15 male professional golfers and 18 sedentary individuals, matched for sex, race, age (29+/-1 and 25+/-1 years, respectively), body mass (79+/-2 and 74+/-2 kg), height (1.78+/-0.01 and 1.77+/-0.02 m) and percent body fat (20+/-2 and 21+/-2%; mean +/- sx). We found that long-term professional golf participation is not associated with significant increments in regional or whole-body bone mass or density. Neither the lumbar spine nor the femoral neck showed any noticeable enhancement of bone mass in professional golfers compared with controls from the same population. The only effect of professional golf participation on regional body composition was a 9% increase in muscle mass in the dominant arm (P < 0.05).  相似文献   

6.
A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling and 126.6 km running. Measurements were taken prior to starting the race and after arrival at the finish line. Total body mass decreased by 1.66 kg (SD = 1.92; -5.3 kg to +1.2 kg; p < .001), skeletal muscle mass by 1.00 kg (SD = 0.90; -2.54 kg to +2.07 kg; p < .001), and fat mass by 0.58 kg (SD = 0.78; -1.74 kg to +0.87 kg; p < .001). The decrease in total body mass was associated with the decrease in skeletal muscle mass (r = .44; p < .05) and fat mass (r = .51; p < .05). Total body water and urinary specific gravity did not significantly change. Plasma urea increased significantly (p < .001); the decrease in skeletal muscle mass and the increase in plasma urea were associated (r = .39; p < .05). We conclude that completing a Triple Iron triathlon leads to decreased total body mass due to reduced fat mass and skeletal muscle mass but not to dehydration. The association of decrease in skeletal muscle mass and increased plasma urea suggests a loss in skeletal muscle mass.  相似文献   

7.
The purpose of the study was to determine the anthropological status of elite male and female speed skaters, who were members of the 1985-7 Canadian national teams. The data were compared to those for a control group of University students. The subjects were 8 males and 6 females between 19 and 27 years of age. Nine breadth, 14 girth, 16 length and 15 skinfold measurements were used to compute parameters of body build and the composition; corrected diameters, masses, volumes and fat-free volumes of the upper arm, forearm, thigh and calf. The speed skaters were found to be similar in body height and mass (males: 178 +/- 7.6 cm and 75.5 +/- 5.5 kg, females: 165.8 +/- 3.8 cm and 62.3 +/- 5.8 kg) to the student controls, but they had relatively and absolutely shorter legs and longer trunks. The speed skaters had a lower amount of body fat and higher FFM than their respective student controls and significantly greater relative (P less than or equal to 0.01) and absolute (P less than or equal to 0.05) total muscle mass. Analysis of composition within segments indicated that the additional muscle mass is located entirely in the lower extremity. The volume and mass of the thigh was greater (P less than or equal to 0.01 for the males) than that of the respective controls while the estimated volume of fat was lower. The female speed skaters were found to have more fat on their thigh than either the male speed skaters or male controls. The corrected diameter and mass of the thigh were greater (with respect to the sex) than those reported for 400 m sprinters, marathon runners, cross-country skiers and figure skaters. The results of the initial assessment were compared to the two consecutive tests of the men's team (conducted 8 and 12 months later) and to one repeated test of the women's team (3 months later). Changes were recorded in skinfold measurements and the muscle component of the thigh.  相似文献   

8.
The ability of bioelectrical impedance analysis and anthropometry to predict fat mass and fat-free mass was compared in a sample of 82 male athletes from a wide variety of sports, using dual-energy X-ray absorptiometry (DXA) as the reference method. The percent fat measured by DXA was 10.9+/-4.9% (mean +/- s), and fat mass was predicted with a standard error of the estimate of 1.7 kg for skinfolds and 2.8 kg for bioelectrical impedance analysis (P < 0.001). Fat-free mass was predicted with a standard error of the estimate of 1.7 kg for anthropometry and 2.6 kg for bioelectrical impedance analysis (P < 0.001). Regression of various individual skinfolds and summed skinfolds, to examine the effect of skinfold selection combinations by stepwise regression, produced an optimal fat mass prediction using the thigh and abdominal skinfold sites, and an optimal fat-free mass prediction using the thigh, abdominal and supra-ilium sites. These results suggest that anthropometry offers a better way of assessing body composition in athletes than bioelectrical impedance analysis. Applying the derived equations to a separate sample of 24 athletes predicted fat and fat-free mass with a total error of 2.3 kg (2.9%) and 2.2 kg (2.7%), respectively. Combining the samples introduced more heterogeneity into the sample (n = 106), and the optimal prediction of fat mass used six skinfolds in producing a similar standard error of the estimate (1.7 kg), although this explained a further 4% of the variation in DXA-derived fat. Fat-free mass was predicted best from four skinfolds, although the standard error of the estimate and coefficient of determination were unchanged.  相似文献   

9.
The purpose of this study was to assess the reproducibility of body composition measurements by dual-energy X-ray absorptiometry (DXA) in 12 elite male wheelchair basketball players (age 31 ± 7 years, BMI 21 ± 2 kg/m2 and onset of disability 25 ± 9 years). Two whole body scans were performed on each participant in the supine position on the same day, using Lunar Prodigy Advance DXA (GE Lunar, Madison, WI, USA). Participants dismounted from the scanning table and were repositioned in-between the first and second scan. Whole body coefficient of variation (CV) values for bone mineral content (BMC), fat mass (FM) and soft tissue lean mass (LTM) were all <2.0%. With the exclusion of arm FM (CV = 7.8%), CV values ranged from 0.1 to 3.7% for all total body and segmental measurements of BMC, FM and LTM. The least significant change that can be attributed to the effect of treatment intervention in an individual is 1.0 kg, 1.1 kg, 0.12 kg for FM, LTM, and BMC, respectively. This information can be used to determine meaningful changes in body composition when assessed using the same methods longitudinally. Whilst there may be challenges in the correct positioning of an individual with disability that can introduce greater measurement error, DXA is a highly reproducible technique in the estimation of total and regional body composition of elite wheelchair basketball athletes.  相似文献   

10.
Abstract

Strength training and positive energy intake are the most important factors related to lean body mass (LBM) gain. Most studies investigating weight-gain interventions are based recreationally active subjects and less is known about optimal weight-gain protocols in elite athletes. The purpose of this study was to evaluate the effect of nutritional guidance in an 8- to 12-week weight-gain period in elite athletes. Thirty-nine elite athletes were randomised to either a ‘nutritional counseling group’ (NCG, n=21, 19.1±2.9 years, 70.9±8.9 kg) or ‘ad libitum group’ (ALG, n=18, 19.6±2.7 years, 75.0±5.9 kg). All athletes continued their sport-specific training which included an additional four strength-training sessions per week. NCG followed a meal plan providing a positive energy balance, while the ALG athletes had an ad libitum energy intake. Body weight (BW), body composition, one repetition maximum (1RM), 40 m sprint and counter movement jump (CMJ) were measured pre- and post-intervention. Energy intake was higher in the NCG than in the ALG (3585±601 vs. 2964±884 kcal) and consequently BW increased more in NCG than in ALG (3.9±0.6% vs. 1.5±0.4%). Fat mass (FM) increased more in NCG than in ALG (15±4 vs. 3±3%), but gain in LBM was not different between groups. All 1RM results improved in both groups (6–12%), whereas 40 m sprint and CMJ remained unchanged, except for a significant decrease in 40 m sprint for the athletes in NCG. Athletes with nutritional guidance increased BW more, however, excess energy intake in a weight-gain protocol should be considered carefully due to undesirable increases in body fat.  相似文献   

11.
Bilateral leg extension power and fat-free mass in young oarsmen   总被引:1,自引:0,他引:1  
We evaluated the impact of bilateral leg extension power and fat-free mass on 2000 m rowing ergometer performance in 332 young oarsmen (age 21+/-2 years, height 1.76+/-0.05 m, body mass 62+/-6 kg; mean+/-s). The 2000 m rowing performance time was correlated with height (1.62-1.93 m; R2=0.23, P<0.001), body mass (53-95 kg; R2=0.53, P<0.001), fat-free mass (47-82 kg; R2=0.58, P<0.001) and bilateral leg extension power (1202-3302 W; R2=0.38, P<0.001). Multiple regression analysis selected fat-free mass and bilateral leg extension power as regressor variables. Fat-free mass explained 58% of the variability in rowing performance and the inclusion of bilateral leg extension power improved the power of prediction by 5%. The results suggest that rowing involves almost every muscle in the body and that bilateral leg extension power is very important during this activity.  相似文献   

12.
The purpose of this study was to develop and cross-validate anthropometric body composition equations for the elderly (i.e., ≥ 65 years old). This was undertaken due to a lack of accurate and reliable body composition equations for the elderly. One-hundred fifty male (n = 75) and female (n = 75; mean age = 70 years, SD = 3.71 years) elderly were randomly assigned to either an equation development sample (n = 50) or an equation validation sample (n = 25), respectively. The male and female development and validation sample groups, respectively, were joined to make combined development (n = 100) and validation (n = 50) samples. Hydrodensitometry was used to determine participant body density, percent fat, fat-free mass, and fat weight for use as the criterion variables by which prediction equations could be developed and validated. The equations presented are for the prediction of body density [body density = 1.0554 + .0142 (gender) + .0267 (height) - .00022 (midaxillary) - .00086 (hip circumference)], percent fat [% fat = .1688 (body mass index) + .542 (hip circumference) -.1639 (weight) -5.7033 (gender) -7.9498], fat-free mass [fat-free mass = 30.3769 + 8.0108 (height) + .824 (weight) - .1355 (suprailiac) - .5419 (hip circumference)], and fat weight [fat weight = .2449 (weight) + .5218 (hip circumference) - .076 (thigh circumference) - 4.0299 (gender) - 37.8619]. The equations provided estimates that were not statistically different from the hydrostatically determined criterion variables but were statisfically different from estimates derived from other published "elderly" body composition equations.  相似文献   

13.
The ability of bioelectrical impedance analysis and anthropometry to predict fat mass and fat-free mass was compared in a sample of 82 male athletes from a wide variety of sports, using dual-energy X-ray absorptiometry (DXA) as the reference method. The percent fat measured by DXA was 10.9 - 4.9% (mean - s ), and fat mass was predicted with a standard error of the estimate of 1.7 kg for skinfolds and 2.8 kg for bioelectrical impedance analysis (P?0.001). Fat-free mass was predicted with a standard error of the estimate of 1.7 kg for anthropometry and 2.6 kg for bioelectrical impedance analysis (P?0.001). Regression of various individual skinfolds and summed skinfolds, to examine the eff ect of skinfold selection combinations by stepwise regression, produced an optimal fat mass prediction using the thigh and abdominal skinfold sites, and an optimal fat-free mass prediction using the thigh, abdominal and supra-ilium sites. These results suggest that anthropometry off ers a better way of assessing body composition in athletes than bioelectrical impedance analysis. Applying the derived equations to a separate sample of 24 athletes predicted fat and fat-free mass with a total error of 2.3 kg (2.9%) and 2.2 kg (2.7%), respectively. Combining the samples introduced more heterogeneity into the sample (n=106), and the optimal prediction of fat mass used six skinfolds in producing a similar standard error of the estimate (1.7 kg), although this explained a further 4% of the variation in DXA-derived fat. Fat-free mass was predicted best from four skinfolds, although the standard error of the estimate and coefficient of determination were unchanged.  相似文献   

14.
In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na(+)]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na(+)] (P < 0.05) all increased. Change in body mass was related to running speed (r = -0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na(+)] (r = -0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na(+)] (r = -0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na(+)] or change in plasma [Na(+)] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners.  相似文献   

15.
A total of 36 non-elite male body builders were observed at the time of competition. Their mean physical characteristics (+/- S.D.) were: age, 24.6 +/- 4.8 years; height, 174.4 +/- 6.7 cm; bodyweight, 80.3 +/- 11.0 kg. Their body composition values were: percentage body fat, 9.3 +/- 1.6%; fat-free mass, 72.8 +/- 9.8 kg. The mean somatotype for all subjects was: endomorphy, 2.3 +/- 0.6; mesomorphy, 6.2 +/- 0.9; ectomorphy, 1.2 +/- 0.6. The body proportions (cm) included: biacromial diameter/bi-iliac diameter, 1.463 +/- 0.132; torso length/height, 0.468 +/- 0.018; chest circumference/abdominal circumference, 1.345 +/- 0.059. The body builders in the present study were younger, had lower bodyweights, lower fat-free mass, lower mesomorphy ratings, smaller circumferences, and smaller skeletal dimensions than elite body builders reported in the scientific literature. When the body builders in the present study were divided into successful and unsuccessful groups based on actual competition results, a multiple-discriminant analysis found that biacromial diameter/bi-iliac diameter, torso length/height, chest circumference/abdominal circumference, percentage body fat, height, and bodyweight accounted for 80.6% of the explained variance. These data indicate that the success of a body builder can be accounted for in large part by easily obtained physical variables.  相似文献   

16.
17.
Immersion of 18 male subjects in water caused a 20.4% (787 ml) increase (P less than 0.05) in the mean inspiratory capacity (IC) whereas there were no changes (P greater than 0.05) in tidal volume (VT) and the frequency of respiration. All the means for the other pulmonary variables decreased (P less than 0.05) by varying amounts: total lung capacity (TLC) = 8.4% (599 ml), vital capacity (VC) = 5.5% (308 ml), functional residual capacity (FRC) = 42.6% (1386 ml), expiratory reserve volume (ERV) = 61.9% (1095 ml) and residual volume (RV) = 19.7% (292 ml). Variation of only the RV in the body density (BD) formula from which the percentage body fat (%BF) is estimated resulted in a significantly (P less than 0.05) lower mean of 15.2% BF for the RV in air (means = 1482 ml) compared with that of 17.1% BF for the RV in water (means = 1190 ml). All but one of the subjects exhibited a smaller RV in water than in air; the six largest differences were equivalent to 2.4-5.1% BF. These results indicate that the net effect of the hydrostatic pressure (decreases RV), pulmonary vascular engorgement (decreases RV) and diminished compliance (increases RV) is to reduce the ventilated RV. It is therefore advisable to measure the RV when the subject is immersed in order to minimize error in the determination of BD and hence the estimation of % BF.  相似文献   

18.
大学生身体成分特征与运动能力及体质健康的关系   总被引:22,自引:3,他引:19  
刘卫  李丰祥 《体育学刊》2004,11(1):52-55
18~ 2 3岁男、女大学生随年龄、体重的增长体脂缓慢增长 ,而去脂体重即瘦体重 (LBM)却呈下降趋势 ;18~ 2 3岁各年龄组大学生中 ,男生 18、19岁年龄组的无氧工作能力及 18岁年龄组的有氧工作能力明显好于其他各年龄组 (P <0 .0 5) ;女生 18、19岁年龄组的无氧及有氧工作能力均明显好于其他各年龄组 (P <0 .0 1) ;18~ 2 3岁各年龄组男、女大学生中 ,体脂高的学生的坐位体前屈、肺活量体重指数、立定跳远、10 0 0m跑 (男子 )及 80 0m跑 (女子 )、握力体重指数等 5项体质指标与体脂正常学生比较 ,有显著或非常显著差异 (P<0 .0 5或P <0 .0 1)。建议采取适当手段对大学生特别是体脂高的学生进行必要的体质健康干预 ,以增强其体质健康水平  相似文献   

19.
In this study, we investigated resting left ventricular dimensions and function in trained female rowers, canoeists and cyclists. In male populations, such athletes have demonstrated the largest left ventricular wall thicknesses and cavity dimensions. Echocardiograms were analysed from 24 athletes (rowers and canoeists, n = 12; cyclists, n = 12) and 21 age-matched controls to measure left ventricular end-diastolic dimension and volume, and septal (ST) and posterior wall (PWT) thicknesses. Left ventricular mass was calculated from M-mode data. Systolic and diastolic function were calculated from M-mode and Doppler echocardiography, respectively. Height, body mass, body surface area and fat-free mass were determined anthropometrically. The athletes were well matched with the controls for all anthropometric variables except fat-free mass (rowers and canoeists 49.7+/-3.6 kg, cyclists 48.0+/-3.8 kg, controls 45.0+/-5.4 kg; P < 0.05). The left ventricular end-diastolic dimension, mass and volume, and septal and posterior wall thicknesses, were all significantly greater in the athletes than the controls (P < 0.05). These differences persisted (except for left ventricular end-diastolic dimension) even after allometric adjustment for group differences in fat-free mass. Stroke volume was larger (rowers and canoeists 102+/-13 ml, cyclists 103+/-16 ml, controls 80+/-15 ml; P < 0.05) in both groups of athletes but all other functional data were similar between groups. As in male athletes, female rowers, canoeists and cyclists displayed significantly larger left ventricular cavity dimensions and wall thicknesses than controls.  相似文献   

20.
李宁 《四川体育科学》2012,(1):30-31,60
目的:研究我国优秀女子水球运动员身体成分与身体机能特点,为水球运动的发展提供研究和实践参考。方法:采用BODPOD空气置换法,对自我国5支省代表队的55名优秀女子水球运动员进行体成分与身体机能测试,并按照运动等级的不同进行统计分析。结果:55名运动员的体脂百分比(%)为24.02±4.86;健将级运动员比一级运动员的体重、握力与台阶指数都明显较大,差异具显著性(p〈0.05),其它机能指标不具显著差异;我国优秀女子水球运动员的体脂百分比我国优秀女子游泳运动员高。结论:本研究提供了一些反映女子水球运动体质要求特点的测试数据;发现女子水球运动员有较高的体脂含量,应控制身体脂肪含量;健将级运动员比一级运动员体重更大,有更强的心肺功能与上肢力量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号