首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

2.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

3.
六年制重点高中数学课本(试用本)《立体几何》P34第10题是: 求证:两条平行线和同一平面所成的角相等。人民教育出版社出版的教学参考书是这样给出“已知”的: 已知:a∥b,a∩α=A_1,b∩α=B_1,∠θ_1,θ_2分别是a、b与α所成的角。显然这里的“a∩α=A_1,b∩α=A_2”缩小了题目的条件范围,使后来的证明漏掉如下面三个图所示的∠θ_1=∠θ_2=0°的情况。  相似文献   

4.
定理:l_1与 l_2为异面直线,l_1上两点 A、B 到 l_2的距离分别为 a、b,二面角 A-l_2-B 为θ,则 l_1与 l_2间的距离 d=absinθ/(a~2+b~2-2abcosθ)~(1/2)  相似文献   

5.
本刊90年3期《一道值得重视的立体几何习题》、92年2期《一个值得重视的二面角公式》讨论了立体几何中的一个习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1cosθ_2=cosθ”的应用和推广,很有教益,也非常重要。笔者认为,这习题之所以重要,不是没有涉及二面角,而是把直二面角的存在与面角的计算公式:  相似文献   

6.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

7.
如图1,P为平面α外一点,PO⊥α,O为垂足,直线l<α,点P与直线l确定平面为β,点B∈l,设PB与平面α所成的角∠PBO=θ1,与l所成的角∠PBA=θ,二面角α-l-β的平面角∠PAO=φ.下面我们来研究θ1、θ、φ之间的关系.在Rt△POB中,sinθ1=PPBO.在Rt△POA中,sinφ=PPAO.在Rt△PBA中,sinθ=PPBA.因为PPBO=PPAO·PPBA,所以sinθ1=sinφ·sinθ在上述公式中,因为0相似文献   

8.
立体几何命题中,求二面角的值是一种常见而且重要的问题。一般的做法是先找出二面角的平面角再计算。本文拟给出一个直接求二面角的公式,并讨论一些相关问题。 定理 设二面角M-AB-N的大小为a,P∈AB,D∈平面N,C∈平面M,∠CPB=θ_1,∠DPB=θ_2,∠CPD=θ,则有 cosθ-cosθ_1cosθ_2 证明:如图1,作AB的垂面,分别交PC、AB、PD于C、E、D.则∠CED=a,∠CEP=∠DEP=90°.设PE=x,从而有PC=xsecθ_1,EC=xtgθ_1,PD=xsecθ_2,DE=xtgθ_2. 在△PCD与△ECD中,分别用余弦定理求CD~2,得整理得 应用此定理便可直接求出二面角的值,请看下面的例子。  相似文献   

9.
《立体几何》第31页第9道题是“求证:两条平行线和同一平面所成的角相等。”人民教育出版社出版的《教学参考书》第43页作了如下的解答: 已知:a∥b,a∩a=A_1,b∩a_1=B_1,∠θ_1、∠θ_2分别是a、b与a所成的角,求证:∠θ_1=∠θ_2。证:如图,在a与b上分别取点 A、B,这两点在平面a的同侧,且AA_1=BB_1,连结AB和A_1B_1。∵:AA_1(?)BB_1,∴四边形AA_1B_1B是平行四边形,∴AB∥A_1B_1,  相似文献   

10.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

11.
高中《立体几何》P31第9题为:求证两条平行线和同一平面所成的角相等,教学参考书上给出的证明是这样的: 已知:a∥b,a∩α=A_1,b∩α=B_1,∠θ_1,∠θ_2分别是a、b与α所成的角。 求证:∠θ_1=∠θ_2。 证明:如图,在a和b上分别取点A、B,这两点在平面α的同侧,且AA_1=BB_1,连结AB和A_1B_1,∴AA_1(?)BB_1,∴四边形AA_1BB_2是平行四边形,∴AB∥A_1B_1,∵A_1B_1(?)α,∴AB∥α,设A_2、B_2分别是α的垂线AA_2、BB_2的垂足,连结A_1A_2、B_1B_2,则距离AA_2=BB_2。  相似文献   

12.
在高中立体几何课本中,有一道习题如下:如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB′成θ_2角,设∠BAC=θ,求证:cosθ=cosθ_1cosθ_2 (1) 运用公式(1),需具备如下条件: 在三面角中,若两个面角所在的平面成直二面角,那么它所对面角的余弦等于这两个面角的余弦之积。公式(1)是球面三角中三面角余弦定理的特殊情  相似文献   

13.
统编高中数学第二册P_(100)第九题,如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB成角θ_2,设∠BAC=θ,则 cosθ=cosθ_1·cosθ_2(*) 其证明不难,但运用有一定的广泛性。兹举凡例说明之。例1:已知一个直角三角形的两直角边长为a、b,把它沿斜边上的高折成直二面角,求两边夹角的余弦  相似文献   

14.
空间几何体的基本结构是三面角,对于三面角,我们有: 定理:在三面角P-ABC中,若以PB为棱的二面角是直二面角;记∠APB=θ_1,∠BPC=θ_2,∠APC=θ,以PA、PC为棱的二面角分别PA、PC, 则:  相似文献   

15.
求异面直线的距离,在立体几何中是一个难点。怎么求?条件不同,方法各异。很多刊物介绍了其代数和几何求法,下面再介绍几种代数求法。式1 如果l_1、l_2为异面直线,l_2交以l_1为交线的两平面π_1,π_2于A、B两点。若AB==m,又对l_1上任两点C、D,有AC=a、BD=b、∠ACD=a,∠BDC=β,l_1、l_2间夹角为θ,则l_1、l_2间距离: d=1/(2msinθ)(4a~2b~2sin~2a.sin~2β-(a~2sin~2a+b~2sin~2β-m~2sin~2θ)~2)~(1/2)  相似文献   

16.
如图,AB 和 CD 是四面体 ABCD 的一双对棱。为叙述方便,我们约定:棱 AB 所在的二面角的平面角为θ1,∠ACB=α_1,∠ADB=3_1;棱 CD 所在的二面角的平面角为θ_2,∠CAD=α_2,∠CBD=β_2。在四面体 ABCD 中,如上所述的八个元素(两条棱、六个角)之间存在着十分密切的联系。本文揭示出其中的两个关系式,并简单介绍它们在解题中的实际应用。定理一四面体 ABCD 中,AB/(sinθ_1 sinα_1 sinβ_1)=CD/(sinθ_2 sinα_2 sinβ_2)。证明:如图,过四面体 ABCD 的顶点  相似文献   

17.
高中《立体几何》(必修) P_(117)第3题:如图1,AB 和平面 a所成的角是θ_1,AC 在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠ABC=θ.求证:cosθ_1·cosθ_2=cosθ.证明略.显然,题中的θ_1、θ_2、θ都是锐角;由余弦函数的单调性知,cosθ_1>cosθ,且cosθ_2>cosθ.于是θ_1  相似文献   

18.
四面体作为三维欧氏空间中的基本图形,它引起了人们的广泛兴趣,近期人们已获得关于四面体的大量的几何不等式,有兴趣的读者可参见D.S.Mitrinovic的专著。可是关于四面体二面角的平分面面积的几何不等式却很少见,本文对此问题进行了探讨,从而获得关于四面体二面角的平分面面积的几个不等式。 以下约定四面体A_1 A_2 A_3 A_4的顶点A_1所对的侧面为f_i,侧面f_i的面积为S_i,任意两侧面f_i与f_i所成的内二面角为θ_(ij),二面角θ_(ij)的平分面面积为T_(ij)(1≤i相似文献   

19.
苏教版《数学课课练》高二下册第17课时例1:已知:∠AOB=90°,过点O引∠AOB所在平面的斜线OC与OA,OB分别成45°,60°角,求二面角A-OC-B的余弦值.图1本题是在已知三个面角∠AOB,∠AOC,∠BOC的条件下,利用二面角的定义求二面角A-OC-B的余弦值.若将本题中的三个面角由特殊推广到一般,设∠AOB=θ1,∠AOC=θ2,∠BOC=θ3,二面角A-OC-B为θ,则有如下结论:cosθ=cosθs1i-nθc2o·ssθi2n·θc3osθ3.证明在OC上取一点D,使OD=1,过点D分别在面AOC,面BOC内作DE⊥OC,DF⊥OC,DE,DF分别交OA,OB于E,F,连EF,则∠EDF为二面角…  相似文献   

20.
高中《立体几何》(必修本)P_(117)总复习参考题第3题.如图1,AB 和平面α所成的角为θ_1,AC在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠BAC=θ.求证:cosθ_1·cosθ_2=cosθ.本题只要利用三垂线定理(或逆定理)便可证明.由此不难得到下面两个结论:(1)公式成立的充要条件为角θ_1,θ_2所在的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号