共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
若一元二次方程ax^2 bx c=0(a0)的两人根为x1,x2,则x1 x2=-b/a,x1x2=c/a。这个结论在数学中称为韦达定理,在物理中有很多方程为一元二次方程,有时应用韦达定理解题很简捷,下面略举几例说明。 相似文献
3.
韦达定理在解题中的应用吴明华如果一元二次方程ax2+bx+c=0(a≠0)的两个根是x1、x,那么这个定理叫做韦达定理,其逆定理也成立。对于一元n次方程,这种根与系数的关系也是存在的。若一元n次方程的根是x1、x2、x3…xn,那么韦达定理及其逆定理... 相似文献
4.
一、韦达定理在数学中的解韦达定理在初中数学中就有着典型的应用,关于一元二次方程的问题,当目标式是关于x1+x2,x1,x2的表达式时,不必求得具体根,只需用韦达定理整体代入就够了. 相似文献
5.
姜衡年 《昆明师范高等专科学校学报》1994,(Z1)
在平面解析几何中,经常会遇到求二次曲线的中点弦,求弦的中点,求弦长,给了定弦求关于这弦的共轭直径等问题,这些问题都可借助于韦达定理而简捷地解决。 相似文献
6.
韦达定理是代数中的一个重要定理,它在解析几何中也有广泛的应用。在解某些解析几何题时,如果注意运用韦达定理,有时能使运算简便。如以下几例。 一、利用x_1 x_2=-b/a 例1.点P(2,2)是椭圆x~2 8y~2 4x-24y 6=0的一条弦的中点,求这条弦所在的直线方程。 解:设所求的直线方程为y-2=k(x-2),它与椭圆的方程x~2 8y~2 4x-24y 6=0组成方程组,消去y得:(1 8k~2)x~2-(32k~2-8k-4)x 32k~2-16k-10=0,设它的两个根是x_1和x_2,则有x_1 x_2=4,根据韦达定理有 相似文献
7.
一、求弦长 求直线与圆锥曲线相交所截得的弦长,可以联立它们的方程,解方程组求出交点坐标,再利用两点间距离公式即可求出,但计算比较麻烦.实际上,不求出交点坐标,利用韦达定理,可得应用方便的弦长公式: 相似文献
8.
韦达定理在解析几何中的应用 总被引:1,自引:0,他引:1
解决直线与圆锥曲线的综合问题的思路通常是:当直线与圆锥曲线交于两个点时,将直线方程与曲线方程联立,得到一个变元的一元二次方程,这时便可得到判别式△〉0(问题成立的必要条件),再用韦达定理求解.有时用x1+x2和x1x2(或y1+y2和y1y2)或坐标的其他形式表示题中涉及到的量或关系.这一环节特点千变万化,不易把握. 相似文献
9.
几何中的一些求值题和证明题,有时若用代数方法去解,反而方便、灵活,这里略举几例,谈一谈韦达定理的应用例1 如图1,AB是半圆的直径,长为5,C是半圆上的一点,CD⊥AB于D,CD长为2,EF是过C点的切线,AE⊥EF 相似文献
10.
在解析几何中,研究曲线的相互位置关系和性质总是转化为研究相应的代数方程。韦达定理是代数方程中最重要的定理之一,在中学解析几何中不乏应用。我们在教学中有些粗浅的体会,写出来求教于同行。 相似文献
11.
设α=λω或α=λω^-是本题关键的一步,设而不求,使得韦达定理与实系数一元二次方程虚根成对定理珠联璧合,解法简捷合理. 相似文献
12.
13.
曾祥红 《数理化学习(高中版)》2006,(21)
在解析几何中,中点、线段长(即两点间距离)等几何量,都由两点同名坐标的和、差、积、商表示,若解出有关的点的坐标再代人公式,则计算量很大,而实际上也无必要.因为由韦达定理可直接求出两点同名坐标的和与积,从而上述几何量都能求出,可省却不少繁杂的计算,在解题中应充分注意运 相似文献
14.
如果两个数α、β满足如下关系:α β=-b/a,αβ=c/a,那么这两个数α、β是方程ax^2 bx c=0(a≠0)的根,我们知道,这便是韦达定理的逆定理.下面举例说明它在三角中的应用。 相似文献
15.
我们知道一n次方程的韦达定理是,方程a_0s~n+a_1x~(n-1)+……+a_n=0,(a_0≠0)有n个根x_1、x_2、……x_n的充要条件是 相似文献
16.
如果两个数α、β满足如下关系:α β=-b/a,αβ=c/a,那么这两个数α、β是方程ax^2 bx c=O(a≠0)的根.这便是韦达定理的逆定理.下面举例说明它在平面三角中的应用. 相似文献
17.
直线和圆锥曲线相交的问题是解析几何中的重要内容之一,也是高考的热点内容.韦达定理在解决此类问题中起着重要作用,特别是在解决有关弦长、两条直线互相垂直、弦中点、对称、轨迹、定点问题时能化难为易,化繁为简. 相似文献
18.
韦达定理是反映一元二次方程根与系数关系的重要定理,纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽,在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长。下面举例谈谈韦达定理在解题中的应用,供大家参考。 一、直接应用韦达定理 若已知条件或待证结论中含有a b和a·b形式的式子,可考虑直接应用韦达定理。 例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.求证: (1)c d=2bcosA; (2)c·d=b~2-a~2. 相似文献
19.
初中数学介绍的韦达定理理解起来很容易,但能灵活运用该定理解决问题是需要技巧的。从历年中考题可以看出,韦达定理的应用是不可缺少的,而且题目更加新颖灵活。其应用范围主要有: 相似文献
20.