首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正问题:如图1,已知圆C:x2+y2=r2与直线l:y=kx+m没有公共点,设点P为直线l上的动点,过点P作圆C的两条切线,A、B为切点。证明:直线lAB恒定过点Q。分析:利用我们常用的一个结论:若点P(x0,y0)是圆x2+y2=r2外一点,则过点P作圆的两条切线,切点分别为A、B,则过A、B两点的直线方程为:x0·x+y0·y=r2。  相似文献   

2.
众所周知,圆有如下性质:过圆222x+y=r(r>0)外一点作圆的切线,PB(PPAA,B为切点),则OP平分弦AB;当∠APB为90时,点P在以O为圆心,2r为半径的圆上.通过类比,笔者发现圆锥曲线也有类似的性质.性质1过圆锥曲线外一点作它的切线,PPA  相似文献   

3.
大家都知道,椭圆、双曲线、抛物线这三个二次曲线统称为圆锥曲线,它们有着统一的定义,因此也注定了它们有着很多相似的性质.在研究问题时往往可以利用类比的思想方法解决问题.比如,抛物线中有这样一个重要定理: 定理1 设Q点是抛物线x2=2px(p>0)准线上的任意一点,若过点Q的直线与抛物线相切,切点为A,B,抛物线的焦点为F,则直线AB过点F,且AB⊥QF.笔者通过研究发现在椭圆和双曲线中也有类似的性质.  相似文献   

4.
文 [1 ]、[2 ]分别探讨了直线方程 x0 xa2 +y0 yb2 =1和直线方程 x0 xa2 -y0 yb2 =1的几何意义。两篇论文给出的结论对于研究椭圆和双曲线具有非常重要的意义。其实对于抛物线、圆也有类似的结论 ,作为对两篇论文的补充现给出抛物线与之相关的定理。定理 1 已知P0 (x0 ,y0 )是抛物线 y2 =2 px上的任意一点 ,则直线 y0 y =p(x0 +x)表示此抛物线上以P0 (x0 ,y0 )为切点的切线。证明 当 y0 >0时 ,抛物线的方程可以写成 y =± 2 px,则 y′=± p2 px,所以P0 (x0 ,y0 )为切点的切线的斜率为± p2px0,切线的方程为 y-y0 =± p2 px0(x -x0 ) ,即…  相似文献   

5.
高中数学课本第二册(上)P57例2证明了:若圆的方程为x2 y2=r2,M(x0,y0)是圆上任一点,则过点M的圆的切线方程为x0x y0y=r2.  相似文献   

6.
性质1椭圆x2/a2+y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是椭圆上的点,直线OM与ON的斜率之积为-b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2+y2/(1+λ)b21的椭圆;双曲线x2/a2-y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是双曲线上的点,直线OM与ON的斜率之积为b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2-y2/(1+λ)b2=1的双曲线;圆x2+y2=r2,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是圆上的点,直线OM与ON的斜率之积为-1,则动点P的轨迹是方程为x2 +y2=(1+λ2)r2的圆.  相似文献   

7.
用三角换元法证明不等式是基本方法,根据题意恰当地进行换元,则可使问题快速获解,达到事半功倍的效果.例1设点P(x,y)是圆x~2+(y-1)~2= 1上任意一点,若总有x+y+c≥0,试求c的取值范围.解因为点P(x,y)在圆x~2+(y-1)~2= 1上,故可设x=cosθ,y=1+sinθ,则x+y+c=cosθ+sinθ+1+c≥0恒成立,  相似文献   

8.
定理过双曲线上一点 P 作切线交渐近线于点A、B,则(1)PA=PB;(2)△OAB(O 为双曲线的中心)的面积为定值.证明:不妨设双曲线的方程为 x~2/a~2-y~2/b~2=1(a>0,b>0),渐近线为 y=±(b/a)x,P(x_0,y_0)为双曲线上任一点,则 AB 的方程为 xx_0/a~2-yy_0/b~2=1,与 y=±(b/a)x 联立,  相似文献   

9.
圆锥曲线有很多优美的几何特征,随着对其研究的逐步深入,新的几何性质不断被发现.下面就是笔者新近发现的椭圆的一个独特性质.定理椭圆的长半轴为a,短半轴为b,中心为O,过椭圆上一点P作长轴的垂线交辅助圆于点A,B,延长半径OA交P点的法线于点C,半径OB交P点的法线于点D,则OC=a b,OD=a-b,CP=PD.图1证明如图1,分别以椭圆的长轴、短轴所在直线为x轴、y轴建立直角坐标系.设椭圆的方程为b2x2 a2y2=a2b2(a>b>0),辅助圆的方程为x2 y2=a2.设P点坐标为P(x0,y0),则b2x20 a2y20=a2b2,过切点P的法线方程为a2y0x-b2x0y=(a2-b2)x0y0.因为AB垂直于x…  相似文献   

10.
1 x0x y0y=R2的几何意义 我们知道,若P(x0y0)在圆x2 y2=R2上则x0x y0y=R2是过P(x0y0)点的圆的切线;若P(x0,y0)在圆外,过P点作圆的切线PA,PB,其中A,B是切点,则x0x y0y=R2是直线AB的方程;若P(x0,y0)在圆内,直线x0x y0y=R2与圆x2 y2=R2外离,其几何意义是什么?笔者在研究这个问题时,发现其几何意义是:过P(x0,y0)任作一弦AB,过A,B分别作圆的切线l1、l2,l1、l2交点的轨迹是直线x0x y0y=R2.  相似文献   

11.
<正>圆的一般式方程C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).当点P(x0,y0)不在圆C上时,x20+y20+Dx0+Ey0+F≠0,该数值有何几何意义呢?经过探索,我们发现结论已知圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),点P(x0,y0).(1)点当P在圆外时,切线PA切圆于点A,则切线长  相似文献   

12.
命题:若直线y=kx+m与双曲线x2/a2-y2/b2=1相交于A,B两点,M(x0,y0)为AB的中点,则b2x0-ka2y0=0. 证明:设A(x1,y1),B(x2,y2), 则x1+x2=2x0,y1+y2=2y0,y2-y1/x2-x1=k 由于A、B两点在双曲线上得: x12/a2-y12/b2=1 ①,x22/a2-y22/b2=1②  相似文献   

13.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

14.
<正>反比例函数y=k/x的本质特征是:两个变量y与x的乘积是一个常数k.由此不难得出反比例函数的一个重要性质:性质如图1,点P(x,y)是反比例函数y=-k/x上任意一点,过点P作PA⊥x轴于点A,作PB⊥y轴于点B,则S_(长方形AOBP)=|k|,S_(△PAO)=1/2|k|.下面举例说明上述结论的应用.一、正向应用例1如图2,点A在双曲线y=1/x上,点B在双曲线y=3/x上,且AB∥x轴,C、D在x轴上,若四边形ABCD的形状为矩形,则它的面积为____.  相似文献   

15.
性质椭圆x2/a2+y2/b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A,B连线PA,pb与对称轴不平行,则直线PA,PB的斜率之积为定值.证明如图1,设P(x,y),A(x2,y1),则B(-x1,-y1).所以x2/a2+y2/b2=1①所以x12/a2+y12/b2=1②  相似文献   

16.
性质椭圆x2a2+y2b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A、B的连线PA、PB与对称轴不平行,则直线PA、PB的斜率之积为定值.证明如图1所示,设P(x,y),A(x1,y1),则B(-x1,-y1).∴x2a2+y2b2=1,①∴x21a2+y21b2=1,②由①-②得x2-x21a2=-y2-y21b2,∴y2-y21x2-x21=-b2a2,∴KPA·KPB=y-y1x-x1·y+y1x+x1=y2-y21x2-x21=-b2a2为定值.这条性质是圆的性质“圆上一点对直径所张成的角为直角”在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁地解决问题.推论若M是椭圆的弦AB之中点,则直线OM与直线AB的斜率之积为定值.证明如图2所…  相似文献   

17.
2003年上海市春季高考解析几何试题是: 设M、N是椭圆x2/a2+y2/b2=1 (a>6>0)上关于原点对称的两点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kpM、kpN,那么kpM·kPN是与点P的位置无关的定值.试对双曲线x2/a2-y2/b2=1写出具有类似特点的性质,并加以证明.  相似文献   

18.
经研究发现,椭圆有如下一个优美性质:定理A为椭圆(x2)1/2(a2)+(y2)1/2(b2)=1(a>b>0)上一个动点,B为直线y=(ab)1/2c上一点,若OA⊥OB,则直线AB与圆x2+y2=b2相切.证明如图1,设直线OA方程为y=kx(k≠0),则直线OB方程为  相似文献   

19.
贵刊文[1]给出了直线x0^x+y0y=r^2与x^2+y^2=r^2圆的关系:结论1 已知圆O:x^+y^2=r^2,点P(x0,y0).(1)若点P(x0,y0)在圆上,过点P的圆切线方程为x0x+y0y=r^2;(2)若点P(x0,y0)在圆外,过点P向圆引两条切线,两切点A、B两点,过A、B两点的两条切线交点的轨迹方程为x0x+y0y=r^2.  相似文献   

20.
.利用向量模的概念图 1【例 1】 已知点P是直线y=1上的动点 ,Q是OP上的动点 ,且|OP|·|OQ| =1,求动点Q的轨迹方程(如图 1) .解 :设Q(x ,y) ,(y >0 ) ,P(x1 ,1)∵ |OP|·|OQ| =1,∴x21 +1· x2 +y2 =1即 (x21 +1) (x2 +y2 ) =1①又OP ,OQ共线 ,OP∥OQ ,∴x -x1 y =0 ,即x1 =xy ②把②代入① ,并整理 ,得图 2x2 +y2 -x =0(y>0 ) .2 .利用非零向量垂直的充要条件【例 2】 已知圆x2 +(y-1) 2 =1上定点A( 0 ,2 ) ,动点B .直线AB交x轴于点C ,过C与x轴垂直的直线交弦OB的延长线于圆外一点P(如图 2 ) ,求P点的轨迹方程 .解 …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号