首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文拟谈由恒等式(a+b)~2=a~2+b~2+2ab引出的两个最值命题及应用。用这两个最值命题解答一些数学习题,解答简捷,巧妙。命题1 若a+b=s(定值),则当ab取最大值P(最小值Q)时,a~2+b~2取最小值S~2-2P(最大值S~2-2Q)。命题2 若a~2+b~2=S(定值),且a+b>0,则当ab取最大值p(最小值q)时,a+b取最大值(S~2+2p)~(1/2)(最小值(S~2+2q)~(1/2))。  相似文献   

2.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

3.
利用和积不等式“(a b)/2≥(ab)~(1/2)”求最值时,我们熟知有如下定理: 定理一若两个正变数a、b之积a b=P是定值,则当a=b时,其和S=a b有最小值, S最小值=2P~(1/2)。初学者在应用本定理解题时,有一个常犯的错误:他们往往只考虑“ab=P为定值”的先决条件,而忽视“a=b”这另一个先决条件,致使造成不少有关问题的错解。  相似文献   

4.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

5.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

6.
高中教材中基本不等式a+b2 ≥ab(a>0 ,b >0 )是证明不等式时经常要用到的 ,等号成立的条件是“a=b” .若对a +b =P(定值 )当且仅当a =b=P2 (定值 )时 ,ab才取得最大值 .利用这一结论 ,我们可以证明一类不等式 :例 1 已知a、b都是正数 ,且a +b =1,求证 :   a+1+b+1≤ 6.证明 由a +b=1,知当a =b=12 时有a +1=b +1=32 ,于是有a +1· 32 ≤a+1+322 ,b+1· 32 ≤b+1+322 ,两式相加 ,得a +1· 32 +b +1· 32≤ a+b +2 +32 =3 ,即  a+1+b+1≤ 6.上式的证明过程中先凑出了一个数32 ,这是根据字母a、b在题设条件和结论中地位是对等的 (即在条…  相似文献   

7.
某些物理问题。往往牵涉到两个物理变量之间的关系,利用绝对值不等式定理来求解,显得方便简捷。定理:①若a、b为任意两正数,并且a+b=定值,则其乘积ab仅当a=b时为极大;②若a、b为任意正数,并且ab=定值,则其和a+b仅当a=b时为极小。下面举例说明: 例1、如图1电路,证明:当R=r时,电源输出功率最大。 [证]∵U+U_r=ε为定值。由定理①可知,U=U_r时,即IR=Ir,或R=r时,U·U_r,有极大值。  相似文献   

8.
完全平方公式(a±b)2=a2±2ab+b2中含有两个等式,若用“加减法”对它们重新组合,则容易得出以下两个推论: a2+b2=1/2(a+b)2+1/2(a+b)2①ab=1/4(a+b)2-1/4(a-b)2 ②  相似文献   

9.
完全平方公式(a±b)2=a2±2ab+b2中含有两个等式,若用“加减法”对它们重新组合,则容易得出以下两个推论: a2+b2=1/2(a+b)2十1/2(a-b)2 ①ab=1/4(a十b)2-1/4(a-b)2 ②如能灵活运用上述推论,则可较简捷地解决一类竞赛题.  相似文献   

10.
我们知道,对于任意的实数a和b,有a2+ b2≥2ab(1)当且仅当a=b时取等号,若ab >0,在(1)的两边同除以ab,即得a/b+b/a≥2(2),当且仅当a=b时取等号. 在(1)中,若令u=a2,v=b2,显然u≥0, v≥0。则有,当且仅当u=v时取等号,现在我们利用这些重要不等式来解一  相似文献   

11.
题目(1991年“希望杯”竞赛试题)已知两数a、b,ab≠1,且2a2+1234567890a+3=0 (1)3b2+1234567890b+2=0, (2)则b/a=____. 解:显然b≠0,由(2)得, 2(1/b)2+12345678901/b+3=0,(3)∵ab≠1,∴a≠1/b.由(1)、(3)可得,a、1/b分别是一元二次方程2x2+123467890x+3=0的两个根,因此b/a=a·1/b=3/2.  相似文献   

12.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

13.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

14.
如果a,bR,那么a2+b2≥2ab(当且仅当a=b时取“=”号).该结论利用作差法极易证明.下面给出其推论及应用.推论1如果a,b是正数,那么a+b2≥ab√(当且仅当a=b时取“=”号).这个定理又可叙述为:两个正数的算术平均数不小于它们的几何平均数.其应用极其广泛,常用于求最值、比较大小、求取值范围和证明不等式等.例1若实数a,b满足a+b=2,则3a+3b的最小值是A.18B.6C.23√D.234√解3a+3b≥23a·3b√=23a+b√=6(当且仅当a=b=1时取“=”号).即3a+3b的最小值为6.选B.推论2如果a,bR,那么a2+b2≥2|ab|(当且仅当|a|=|b|时取“=”号).证明∵a2+b2=…  相似文献   

15.
《数学通报》2010年第8期问题1869如下: 问题1869[1]设a,b>0. (Ⅰ)若a+b≤√2,则1/1+a2++1/1+ b2≥1/1+(a+b)2 (1) 当且仅当a=b=√2/2时等号成立; (Ⅱ)若ab≥1/2,则1/1+a2++1/1+ b2≤1/1+(a+b)2 (2) 当且仅当a=b=√2/2时等号成立.  相似文献   

16.
定理在△ABC 中,D 在 AB 上 ,AD=λ·AB,BC=a,CA=b,CD=m,则∠C=90°的充要条件是 m~2=λ~2a~2+(1-λ)~2b~2(0<λ<1).证明:设(?)=b,(?)=a,则(?)=a-b.(?)=λ(?)=λ(a-b),(?)=(?)+(?)=λa+(1-λ)b,((?))~2=[λa+(1-λ)b]~2.∴m~2=λ~2a~2+(1-λ)~2b~2+2λ(1-λ)a·b.∠C=90°的充要条件为 a·b=0,即 m~2=λ~2a~2+(1-λ)~2b~2.当λ=1/2,a~2/b~2,a/(a+b)时,CD 分别为 AB 边中线、高  相似文献   

17.
一元二次方程是初中数学的重要内容.巧妙地构造一元二次方程,可以解决许多难度较大的问题.现以几道典型的竞赛题为例,介绍构造一元二次方程的常用方法.一、应用方程根的定义例1若ab≠1,且有5a2+2001a+9=0,9b2+2001b+5=0,则ba的值是().(A)95(B)59(C)-20501(D)-20901(2001年全国初中数学联赛试题)解:显然b≠0,由9b2+2001b+5=0,得5b1#$2+2001·1b+9=0.又5a2+2001·a+9=0,由ab≠1知a≠b1,所以a、1b是方程5x2+2001x+9=0的两个根.由根与系数的关系知a·b1=95,即ba=59,选(B).二、应用根的判别式例2已知41(b-c)2=(a-b)(c-a),且a≠0,则b+a c=.(1999…  相似文献   

18.
a>0,b>0,(a+b)/2≥2(ab)~(1/2)是一个重要的基本不等式,可以求函数的值域.在应用时,务必注意其条件:一是a,b都是正数;二是定值条件,即和为定值或积是定值;三是相等条件,即a=b时取等号.当条件不具备时,需要进行适当的转化,现举例说明.  相似文献   

19.
在中学数学中,公式ab≤((a+b)/2)~2(a,b∈R),a·b·c≤((a+b+c)/3)~3(a,b,c∈R~+),以及公式a+b≥2(ab)~(1/2)(a,b∈R~+)在求极值时有广泛的应用。运用这些公式,常常会碰到不等式的右(左)端不能成为常数的情形,这时需巧做变换,使右(左)端能成为常数且恰巧为极值,下面用例题说明: 例1.求函数y=1/2sin2xcosx,x∈(-π/2,π/2)的极值。  相似文献   

20.
学习了相反数和倒数的有关知识后,不难发现关于相反数和倒数具有如下性质: 1.如果a、b互为相反数,那么a+b=0; 2.如果a、b互为倒数,那么ab=1, 解答某些与相反数或倒数有关的问题时,应注意灵活巧用这两个性质. 例1 若a与b互为倒数,x与y互为相反数,则-2ab+2x+2y的值是___.(1998年成都市初一数学竞赛试题) 解:由a与b互为倒数,x与y互为相反数,得 ab=1,x+y=0. 原式=-2ab+2(x+y) =-2·1+2·0=-2. 例2 已知a与-b互为相反数,那么  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号