首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在科学创造的发现与发明中,类比有着十分广泛的应用.本文借助圆中我们熟悉的5个性质出发,类比出双曲线的5个类似性质,以期抛砖引玉,激发起同学们的创造热情和类比发现意识.定理1点P(x0,y0)为圆x2+y2=1上任意一点,则过点P(x0,y0)的圆的切线方程为x0x+y0y=1.推广定理1点P(x0,y0)为双曲线x2/a2-y2/b2=1(a>0,b>0)上任意一点,则过点  相似文献   

2.
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点P(x0,y0)及斜率,其求法为:设P(x0,y0)是曲线y=f(x)上的一点,则以P为切点的切线方程为:y-y0=f’(x0)(x-x0).若曲线y=f(x)在点P(x0,f(x0))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x0.  相似文献   

3.
求圆、椭圆、双曲线、抛物线的切线方程,思路明确,但其计算量往往令人“算而却步”,下面就上述四种曲线,来剖析它们切线方程的结构特征,以飨读者. 对于二次函数的切线方程我们是会求的,如求曲线y=px2(p≠0)在点(x2,y0)处的切线方程.斜率k=f1(x0)=2px0,由点斜式知:切线方程为y-y0=2px0(x-x0)(→)=y+y2/2=px·x0,即把原函数表达式中的y换成y+y0/2,把x2换成x·x0.  相似文献   

4.
1问题的提出试题已知椭圆C:x2+4y2=16,过点P(2,1)作一直线l交椭圆C于A,B两点,若点P为交点弦AB的中点,求直线l的方程.这是一道我校"圆锥曲线与方程"一章阶段测试的试题,讲评试题时笔者采用的是"点差法"与"设而不求"两种常规方法,课后有一位同学提出教辅材料中介绍的一种简解方法如下:将点P(2,1)代入椭圆的切线方程x0x+4y0y=k,得2x+4y=k,点P(2,1)在此直线上得k=8,则直线l的方程为2x+4y=8即  相似文献   

5.
贵刊文[1]给出了直线x0^x+y0y=r^2与x^2+y^2=r^2圆的关系:结论1 已知圆O:x^+y^2=r^2,点P(x0,y0).(1)若点P(x0,y0)在圆上,过点P的圆切线方程为x0x+y0y=r^2;(2)若点P(x0,y0)在圆外,过点P向圆引两条切线,两切点A、B两点,过A、B两点的两条切线交点的轨迹方程为x0x+y0y=r^2.  相似文献   

6.
已知Q(x0 ,y0 )是椭圆x2a2 y2b2 =1 (a>b>0 )上一点 ,求作过Q点的切线 ,文 [1 ]给出了一种尺规作法 ,若Q在非顶点处 ,文[1 ]作法的实质是 :取点P(x0 ,ay0b) ,作PN⊥OP(O为坐标系原点 ) ,交x轴于N ,则直线NQ为所求的切线 .我们指出 ,当b>a>0时 ,这种作法同样正确 ,过双曲线上一点作双曲线的切线也有类似的作法 .已知双曲线 x2a2 - y2b2 =± 1上一点Q(x0 ,y0 ) ,过Q点的切线方程是x0 xa2 - y0 yb2=± 1 ,当Q不是顶点时 ,该切线的斜率为b2 x0a2 y0.下面给也切线作法 :作法 :( 1 )若Q为双曲线顶点 ,则切线垂直于Q点所在的轴 .( 2 )或Q…  相似文献   

7.
1混淆曲线y=f(x)在点P处的切线与过点P的切线 例1已知曲线y=1/3x^3上一点P(2,8/3),求过点P的切线方程.[第一段]  相似文献   

8.
题目如图1,已知双曲线C:x^2/a^2-y^2=1(a〉0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF//OA(O为坐标原点). (1)求双曲线C的方程; (2)过C上一点P(x0,y0)(y0≠0)的直线l:x0x/a2-y0y=1与直线AF相交于点M,与直线x=3/2相交于点N,证明:当点P在C上移动时,|MF|/|NF|恒为定值,并求此定值.  相似文献   

9.
上海市高中二年级数学第一学期(试验本)课本第115页有这样一道例题:已知双曲线过点P(4,3),它的一条渐近线的方程为y=1/2x,求双曲线的标准方程.传统的解法:∵双曲线的一条渐近线方程为y=1/2x,∴当x=4时,渐近线上对应点的纵坐标为1/2×4=2,小于点P的纵坐标3(如图1),所以双曲线的焦点在y轴上.于是,设双曲线的方  相似文献   

10.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

11.
1.问题高中新教材数学第三册114页谈到导数的几何意义:曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f’(x0),切线方程为: y-y0=f'(x0)(x-x0) (*)所以可利用导数求曲线的切线方程. 问题1 点P不在曲线上如何用导数方法求过点P的切线方程? 问题2 点P在曲线上,过点P作曲线的切线只有一条吗?即方程(*)惟一吗?  相似文献   

12.
在高二数学(上)(试验修订版)第七章《直线和圆的方程》中有一重要结论:过圆x^2+y^2=r^2上一点P0(x0,y0)的切线方程为x0x+y0y=r^2此切线方程可看成是已知圆的方程x^2+y^2=r^2作如下置换:x^2→x0x,y^2→y0y而得到.教学时着重强调点P0(x0,y0)必须在圆上,否则结论不适用.那么,当点P0(x0,y0)不在圆上时,直线x0x+y0y=r^2与圆x^2+y^2=r^2有何关系呢?  相似文献   

13.
定理过双曲线上一点 P 作切线交渐近线于点A、B,则(1)PA=PB;(2)△OAB(O 为双曲线的中心)的面积为定值.证明:不妨设双曲线的方程为 x~2/a~2-y~2/b~2=1(a>0,b>0),渐近线为 y=±(b/a)x,P(x_0,y_0)为双曲线上任一点,则 AB 的方程为 xx_0/a~2-yy_0/b~2=1,与 y=±(b/a)x 联立,  相似文献   

14.
教材(人教版)对于导数的几何意义是这样叙述的:“函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0)处的切线的斜率,也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是f(x0)。相应地,切线方程为y-y0=f’(x0)(x-x0)。”因此,我们有了求切线方程的方法。  相似文献   

15.
高中数学课本第二册(上)P57例2证明了:若圆的方程为x2 y2=r2,M(x0,y0)是圆上任一点,则过点M的圆的切线方程为x0x y0y=r2.  相似文献   

16.
一、混淆曲线y=f(x)在点P处的切线与过点P的切线例1已知曲线y=f(x)=(1/3)x~3上一点P(2,8/3),求过点P的切线方程。错解:f′(x)=x~2.设过点P的切线的斜率为k,则k=f′(2)=4.  相似文献   

17.
基本问题 :已知圆的方程为 x2 + y2 =r2 ,求过圆上一点 P0 (x0 ,y0 )的圆的切线方程。解法 1:若 y0 ≠ 0 ,则所求切线斜率存在 ,设所求方程为 y- y0 =k(x- x0 ) ,代入 x2 + y2 =r2 得 :(1+ k2 ) x2 + (2 ky0 - 2 k2 x0 ) x+ y0 2 + k2 x0 2 -2 kx0 y0 - r2 =0 ,由判别式△ =0得 :(r2 - x0 2 ) k2 + 2 x0 y0 k+ r2 -y0 2 =0。又 x0 2 + y0 2 =r2 ,∴ y0 2 k0 2 + 2 x0 y0 k+ x0 2 =0。即 (y0 k+ x0 ) 2 =0 ,解得 k=- x0 / y0 。故所求切线方程为 y- y0 =- x0 / y0 (x- x0 ) ,即 x0 x+ y0 y=x0 2 + y0 2 亦即 x0 x+ y0 y=r2 。 1当 y0 =0时 ,…  相似文献   

18.
题目(2009北京高考卷19题)已知双曲线C:x^2/a^2-y^2/b^2=1(a〉0,b〉0)的离心率为√,右准线方程为x=√3/3.(I)求双曲线C的方程;(Ⅱ)设直线l是圆0:x^2+y^2上的动点P(x0,Y0)(X0Y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.  相似文献   

19.
本文介绍椭圆和双曲线切线的一个有趣性质 ,并说明其应用 .定理 经过椭圆 b2 x2 a2 y2 =a2 b2 (a>b>0 )或双曲线 b2 x2 - a2 y2 =a2 b2 (a>0 ,b>0 )的长轴或实轴两端点 A1 和 A2 的切线 ,与椭圆或双曲线上任一点的切线相交于 P1 和P2 ,则 |P1 A1 |· |P2 A2 |=b2 .证明 椭圆上任一点 P(acosθ,bsinθ)处的切线方程为 b2 ·acosθ· x a2 · bsinθ·y=a2 b2 即bcosθ·x asinθ·y- ab=0 .1又知点 A1 (- a,0 )和 A2 (a,0 )处的切线方程分别为 x=- a和 x=a,将它们分别与1联立解得 |P1 A1 |=|y P1|=b|1 cosθsinθ |,|P2 A2 |=|y P…  相似文献   

20.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号