首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
请看下面的问题:当变数x,y满足条件:4x~2-5xy 4y~2=5时,求函数W=x~2 y~2的最大值和最小值。显然这是一个条件极值问题。联想到x~2 y~2表示动点P(x,y)到原点的距离平方,因此本题实际上是求曲线4x~2-5xy 4y~2=5上的动点P(x,y)到原点的距离(的平方)的极值问题。从这个几何意义及方程4x~2-5xy 4y~2=5的对称性出发,我们至少可以得到以下四种解法:  相似文献   

2.
<正>在高中学习圆的知识后,经常会遇到下面的这类问题:引例已知x~2+y~2-4x+1=0,(1)求■的取值范围;(2)求y-x的取值范围;(3)求x~2+y~2的取值范围.解法1 (几何法) x~2+y~2-4x+1=0变形为(x-2)2+y~2=3记为圆C.(1)■的几何意义为圆C上任意一点P(x,y)  相似文献   

3.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

4.
用点到直线的距离公式和两点间的距离公式求极值,往往比较简便.下面请看两个例子.[例1]已知3x+4y=5,求x~2+y~2的极小值.[分析]等式3x+4y=5是一条直线的方程,而x~2+y~2则表示平面上的点(x,y)到原点的距离的平  相似文献   

5.
一、利用圆的切线的斜率例1已知实数x、y满足x~2+y~2=1,求y+2/x+1的取值范围.解析单从数的角度研究,似乎很难.转换角度,以数形结合来研究,各式都有具体的形象.如图1,设P(x,y)是圆O:x~2+y~2=1上的点,则y+2/x+1是过P(x,y)、A(-1,-2)两点直线PA的斜图1率k_(PA).过A作圆的切线AB和AC,  相似文献   

6.
设有两相交圆C_1:x~2 y~2 D_1x E_1y F_1=0C_2:x~2 y~2 D_2x E_2y F_2=0则方程:x~2 y~2 D_1x E_1y F_1 λ(x~2 y~2 D_2x E_2y F_2)=0①当λ≠-1时,表示的图形是经过 C_1、C_2交点的圆系(不包括 C_2)当λ=-1时,①式变为  相似文献   

7.
这里介绍一类不等式,条件极值的特殊证法(解法)如下: ①通过变形、引入参数,换元等,把已知条件,要证结论化为直线(平面)或圆(球面)的方程的形式。②根据直线与圆(平面与球面)有公共点的条件,直接应用点到直线(平面)的距离公式即可获解。例1 已知x+2y+3z=a 求证: 证:问题可归为求使直线 x+2y+(3z-a)=0 与圆 x~2+y~2=a~2-z~2 有公共点(x,y)的z的取值范围,则平方整理后得:  相似文献   

8.
1 问题的提出很多的解析几何教学用书上都有下面的结论: 已知两圆C_: x~2+y~2+D_(1x)+E_(1y)+F_1=0,C_2: x~2+y~2+D_(2x)+E_(2y)+F_2=0与直线l:(D_1-D_2)x+(E_1-E_2)_y+(F_1-F_2)=0. (1) 若圆C_1与圆C_2相切,则直线l是过公切点  相似文献   

9.
浅谈隐函数极值的求法   总被引:1,自引:0,他引:1  
利用极值存在的第一、第二充分条件可以解决显函数的极值问题。下面将通过几个例题来初步探讨利用这二个充分条件解决隐函数的极值求解问题。 例1 试求a~2/x~2+b~2/y~2=1的极值。 解 将x~2/a~2+y~2/b~2=1记作(1)式,易知x、y的取值范围分别  相似文献   

10.
在许多解析几何的著作中,有关共轴圆系理论是以如下方式阐述的: 到两不同心的已知圆C_i: f_i(x,y)=x~2 y~2 D_ix E_iy F_i=0 (i=1,2)的切线长相等的点的轨迹称为此两圆的根轴,共根轴的圆系称为共轴圆系。共轴圆系的方程为f_1 λf_2=x~2 y~2 D_1x E_1y F_1 λ(x~2 y~2 D_2x E_2y F_2)=0,其中λ为不等于-1的任意常数。当λ=-1时上式即  相似文献   

11.
题目确定方程组{x+y+z=3;①x~2+y~2+z~2=3 ②x~3+y~3+z~3=3 ③的整数解. 解由①,得x+y=3-z,④由②,得(x+y)~2-2xy+z~2=3 ③  相似文献   

12.
将公式sin~2α cos~2α=1与圆的方程x~2 y~2=1进行比较,易见若点 A(x,y)是角α终边与单位圆x~2 y~2=1的交点,则有x=cosα,y=sinα.考虑点  相似文献   

13.
本刊1984年第1期上何平老师的“条件等式的一些证法”一文,读后收益不少。但我们感到还可以作些补充。因式分解法有以下几种情况: 1、通过对已知条件分解因式,获得某种简单关系,使证明得到解决。例1 已知x~2-yz=y~2-zx,x(?)y,求证z~2-xy=y~2-zx。证由已知x~2-yz=y~2-zx,移项得 x~2-y~2+zx-yz=0,分解因式得(x-y)(x+y+z)=0,∵x(?)y,∴x+y+z=0。①又z~2-xy-(y~2-zx)=(z-y)(x+y+z),  相似文献   

14.
题目(2012年高考湖北卷·理6)设口,b,c,x,y,z是正数,且a~2+6~2+c~2=10,x~2+y~2+z~2=40,ax+by+xz=20,则a+b+c/x+y+z=A.1/4.B.1/3 C.1/2 D.3/4以上题目旨在考查柯西不等式、等比性质等基础知识.笔者将其进一步推广得到一般性的变式题1、2(如下),并进行探究.变式1设a,b,c,z,y,z,p,q,r.是正数,且a~2+b~2+c~2=p~2,x~2+y~2+z~2=q~2,ax+by+cz=r~2,  相似文献   

15.
设有两个不同的圆:F_1(z,y)≡x~2 y~2 2D_1x 2E_1y F_1=0及 F_2(x,y)≡x~2 y~2 2D_2x 2E_1y F_2=0.我们称 F_1(x,y) λF_2(x,y)=0(参数λ■-1)为圆系(不包括圆 F_2(x,y)=0).(1)问题是:1.方程(1)一定表示圆吗?2.圆系有什么性质?参数λ的几何意义是什么?  相似文献   

16.
一类五次系统的中心焦点判定   总被引:1,自引:0,他引:1  
给出五次系统x=λx-y+yR_2+xR_4,y=x+λy-xR_2+yR_4,R_2=b_1x~2++b_2xy+B_3y~2,R_4=a_4x~4+a_2x~3y+a_1xy~3+a_0y~4,在O(0,0)的各阶焦点量和O为中心的充要条件.  相似文献   

17.
如果正整数a、b、c、d满足关系a~2+b~2+c~2=d~2,则a、b、c、d可分别作为长方体的长、宽、高和对角线。于是,我们说a、b、c、d是一组长方体数。长方体数可看作是勾股数的三维推广,从这一点就可说明长方体数在立体几何数学中,在第二课堂教学中均具有参考价值。长方体数是不定方程x~2+y~2+z~2=w~2的正整数解。因此,本文从讨论不定方程x~2+y~2+z~2=w~2的正整数解出发推导构造长方体数的两个法则。因不定方程x~2+y~2+z~2=w~2有正整数解。可先假定(x,y,z)=1。因当(x,y,z)=d_0>1时,由d_0~1|x~2,d_0~2|y~2,d_0~2|z~2有d_0~2|w~2,即有d_0~2|w,此时不定方程两边可同时约去d_0,便有(x/d~0,y/d_0,z/d_0)=1。当(x,y,z)=1时,显然x、y、z不可能同时为  相似文献   

18.
隐函数是表示函数关系的一种特殊形式。在讲解隐函数及其求导法时,有不少隐函数的例题和习题,在这些题目中,有些是我们熟知的,如x~2+y~2=R~2、(x~2)/(a~2)+(y~2)/(b~2)=1;有些可转化为显函数x=(?)(y),如y=1+xe~y、ye~x+lny=1……;有些可化为参数方程或极坐标方程,如arctg y/x=ln(x~2+y~2)~(1/2)(对数螺线)、(x~2+y~2)~(1/2)=a arctg y/x(阿基米德螺线),等等,这些都是我们较了解的。但象xy=e~(x+y),x~y=y~x等隐函数却比较陌生,有的学生甚至认为是虚设的。因此,有必要讨论一下这两个函数的性质及其图象。  相似文献   

19.
错在哪里     
1.浙江临海市杜桥中学叶明淮来稿(邮编:317016)题:已知x~2+y~2≤1,x、y ∈R。求证:3≤|x+y|+|y+1|+|2y-x-4|≤7。证明:如图, 设l_1:x+y=0,l_2:y+1=0,l_3:2y-x-4=0,而点(x,y)满足x~2+y~2≤1,可知l_2≥0,l_3〈0。当x+y≥0时,u=x+y+y+1-  相似文献   

20.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号