首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]、[2]给出了递推数列x_(n+1)=(ax_n+b)/(cx_n+d)通项的若干求法。本文将给出一种新的求法,而此方法在讨论该类型递推数列的存在性和周期性时是较方便的。设c≠0,则上述递推公式可化为x_(n+1)=(Px_n+Q)/(x_n+R) (1) 在由(1)式及x_1直接递推x_2,x_3,x_4等项的过程中容易发现:在一般情况下,x_n可表示成x_n=(a_(n-1)x_1+b_(n-1)Q)/(c_(n-1)x_1+d_(n-1)) (2)因此,只要能求出a_(n-1),b_(n-1),c_(n-1),d_(n-1),就不难求得x_n({a_n},{b_n},{c_n},{d_n}为辅助数列)。为此,不妨设  相似文献   

2.
一本杂志上刊登过如下一道题目: 题一:设,f(x)=(x~2-4)~(1/2)(x≤-2).(1)求f~(-1)(x);(2)设a_1=1,a_n=f~(-1)(a_(n-1))(n≥2,n∈N),求a_n;(3)求sum from i=1 to n 1/(a_1+a_i+1)的值该题作为函数与数列的综合题在教学中广为流传,通常简解如下解:(1)函数,f(x)=(x~2-4)~(1/2)(定义域为x≤—2,值域为y≥0)的反函数为f~(-1)(x)=-(x~2+4)~(1/2)(定义域为x≥0,值域为y≤-2) (2)∵a_1=1,a_n=f~(-1)(a_(n-1))由迭代法得:a_n=-(a_(n-1)~2+4)~(1/2)=-(a_(n-2)~2+2×4)~(1/2)=…=-(a_1~2+(n-1)4)~(1/2)=-(4n-3)~(1/2)(亦可由a_n~2=a_(n-1)~2+4,n=2,3,…n,累加而得) (3) 注意到 a_n~2-a_(n-1)~2=4,  相似文献   

3.
对问题:若数列{x_n}满足递推关系 x_(n 1)=f(x_n),求数列{x_n}的通项公式.我们可以尝试先求出方程 x=f(x)的根,即函数f(x)的不动点,再将递推公式 x_(n 1)=f(x_n)转化为 x_(n 1)-α=a(x_n-α)、x_(n 1)-α=a(x_n-α)~2、x_n 1  相似文献   

4.
第一试一、解方程:(x+3)~(1/2)=|x-2|-1.解:先限定 x≥2:这时|x-2|=x-2,原方程化为(x+3)~(1/2)=x-3,x+3=x~2-6x+9,∴x~2-7x+6=0,(x-6)(x-1)=0,∴x_1=6,x_2=1(x_2不合我们的限定,舍  相似文献   

5.
阿基米德创造的用来逼近π的方法(译者注:即刘徽的“割圆术”),是数值分析的基本概念之一——迭代数列的一个简单有趣的先例。由函数f按下式生成的数列{x_n}: x_1=f(x_0),x_2=f(x_1),……,x_n=f(x_(n-1)),……,n=1,2,3,……叫做一个迭代数列(或递推数列),x_0叫做初始值。由于x_n=f(x_(n-1)),如果{x_n}有极限,那么这个极限就是方程x=f(x)的解,方程x=f(x)的解也叫做函数f(x)的不动点。阿基米德求π的方法,与计算内接(或外切)于单位圆的正n边形的周长当n趋于无  相似文献   

6.
试题已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3…(Ⅰ)证明数列{lg(1+an)}是等比数列;(Ⅱ)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;(Ⅲ)记bn=a1n+an1+2,求数列{bn}的前n项和Sn,并证明Sn+3Tn2-1=1.解(Ⅰ)由a1=2,且点(an,an+1)在f(x)=x2+2x的图象上,所以an+1=a2n+2an>0(n=1,2,3,…)所以llgg((11++aan+n)1)=lg(1lg+(12+ana+n)a2n)=2,所以数列{lg(1+an)}是以2为公比的等比数列.(Ⅱ)由(Ⅰ)知数列{lg(1+an)}的公比为2,第1项为lg3,从而lg(1+an)=2n-1lg3=lg32n-1,即1+an=32n-1(1)因此数列{an}的通项为an=32n-1-1.由(1)得…  相似文献   

7.
题 用换元法解方程((x 2)/(x-1))~(1/2) ((x-1)/(x 2))~(1/2)=5/2。 (人教版初中代数第三册第57页第3题) 解法一 (运用倒数关系换元) 设((x 2)/(x-1))~(1/2)=y,则((x-1)/(x 2))~(1/2)=1/y, ∴原方程化为y (1/y)=5/2, 解这个方程,得y_1=2,y_2=1/2。 当y=2时,((x 2)/(x-1))~(1/2)=2, 解之,得x_1=2;  相似文献   

8.
一、巧用倒数关系 例1 解方程:(2x+10)/x+x/(2x+10)=145/12。 分析 观察方程,左边两个分式互为倒数,右边145/12=12+1/12,12与1/12也互为倒数。由此特点可巧解方程。 解 原方程变形为(2x+10)/x+x/(2x+10)=12+1/12。∴(2x+10)/x=12,或(2x+10)/x=1/12。 解得x_1=1,x_2=-120/23。  相似文献   

9.
1.设二阶循环数列X=(x_n)n≥1由递推关系 x_(n 2)=ax_(n 1) bx_n (n≥1) x_1=p,x_2=q给出,其中a、b;p、q为实数。 命题1.对于由(1)定义的数列X。 x_(n 1)x_(n-1)-x_n~2=(b)~(n-2)(apq bp~2-q~2) (2)对任意n≥2成立。  相似文献   

10.
解无理方程,通常是采用两边平方的办法。但这样做往往要进行两次以上的平方,出现高次方程,给解方程带来困难。本文介绍另一种解法——“平方差法”。先看例1 解方程(x~2+x-2)~(1/2)-(x~2+x-5)~(1/2)=1 (1) 解:由恒等式((x~2+x-2)~(1/2))~2-((x~2+x-5)~(1/2))~2=3 (2) (2)÷(1)得(x~3+x-2)~(1/2)+(x~2+x-5)~(1/2)=3 (3) (1)+(3)化简得(x~2+x-2)~(1/2)=2 (4) 两边平方整理得x~2+x-6=0 解得x_1=2,x_2=-3。经检验知,x_1=2,x_2=-3都是原方程的根。用这种方法解无理方程,虽然避免了高次方程的出现,但是有可能遗根。请看例2 解方程(x~2+5x-6)~(1/2)+2=(x~2+x-2)~(1/2)+22~(1/2) 解:将原方程变形为(x~2+5x-6)~(1/2)-(x~2+x-2)~(1/2)  相似文献   

11.
构造法解题在近年高考、竞赛中时有出现常见的有构造函数、构造不等式、构造数列、构造几何图形等,本文将通过具体题目来说明. 一、构造函数 例 1 设f(x)=x3-6x2+9x-14,f(m)=1,f(n)=-1,求m+n的值。 解:f(x)=(x-2)3+3(x-2),∴(m-2)3+3(m-2)=1①(n-2)3+3(n-2)=-1②设F(x)=x3+3x易知F(x)=x3+3x是单调递增的奇函数,∴F(m-2)=-F(n-2)=F(2-n)∴m-2=2-n,∴m+n=4.  相似文献   

12.
对于函数f(x),若存在x_0∈R,使f(x_0) =x_0成立,则称x_0为函数f(x)的不动点.数列与函数密切相关.对于a_(n 1)=(pa_n q)/(ra_n s)型递推数列,利用不动点可以妙求其通项公式.先推导a_(n 1)=pa_n q(p≠1)型递推数列的通项公式.∵p≠1,所以存在α满足α=  相似文献   

13.
本文用组合分析的方法,对图论中二分树的顶点计数中的一个重要参数一数列{V(n)}满足(1)递推关系V(n)=V(n-1)+V(n-2)+1;(2)初始条件V(0)=1,V(1)=2,进行了深入研究,得出了一系列关于{V(n)}的基本性质;并将{V(n)}与Fibonacci数列{Fn}及Lucas数列{Ln},有机地联系了起来,得出了其间相关的结论。  相似文献   

14.
<正>数列的通项公式是高考重点考查的知识点之一,求数列通项公式的方法也很多,在具体的问题中选择最适当的方法来解决是重中之重。本文主要介绍用特征根法求数列通项公式。若常系数齐次线性递归数列的递归关系为:a_(n+k)=c_1a_(n+k-1_+c_2a_(n+k-2)+…+c_ka_n,则称方程xk=c_1xk=c_1x(k-1)+c_2x(k-1)+c_2x(k-2)+…+c_k为其特征方程,方程的根称为{a_n}的特征根。定理:如果x_1,x_2是递推关系a_n=  相似文献   

15.
对某些函数来说,其单调性并不难应用简单的方法加以确定,而这些函数的单调性又为解某些数学问题提供了依据,本文试举数例,以示应用函数的单调性在解方程,求解不等式及证明不等式中的应用。例1 在实数范围内解方程4((x+2)(1/2))-(7-x)(1/2)+3=0。解:易知方程中x的取值范围是-2≤x≤7。在此区间上,f(x)=4(x+2)(1/2)是增函数,g(x)=(7-x)(1/2)是减函数,故F(x)=4((x+2)(1/2))-(7-x)(1/2)是增函数,又F(-2)+3=0,故应用F(x)的单调性  相似文献   

16.
递推数列是当前数列教学中的热门,而由递推关系求通项又是递推数列的重要内容之一。本文将求通项的各种方法作一归纳: 一.用S_n-S_(n-1)=a_n,使等式变形,间接递推例1 已知数列{a_n},a_1=1,a_n=(2S_n~)/(2S_n-1)(n≥2),求a_n。解:∵ a_n=S_n-S_(n-1),a_n=(2S_n~2)/(2S_n-1)。∴S_n-S_(n-1)=(2S_n~2)/(2S_n-1),1/S_n-1/(S_n-1)=2,设1/S_n=b_n,∴{b_n}是公差为2的等差数列,又b_1=1/S_1=1/a_1=1,∴b_n=1/S_n=1+(n-1)·2  相似文献   

17.
命题1 设f(x)-g(x)=R(x)-S(x)=常数≠0,则方程(f(x))~(1/2) (g(x))~(1/2)=(R(x))~(1/2) (S(x))~(1/2)或(f(x))~(1/2)-(g(x))~(1/2)=(R(x))~(1/2)-(S(x))~(1/2)有实根的必要条件是f(x)=R(x)(或g(x)=S(x))命题2 设f(x)-g(x)=R(x)-S(x)=t(x)则方程(f(x))~(1/2) (g(x))~(1/2)=(R(x))~(1/2) (S(x))~(1/2)或(f(x))~(1/2)-(g(x))~(1/2)=(R(x))~(1/2)-(S(x))~(1/2)有实根的必要条件是t(x)=0或f(x)=R(x)(或g(x)=S(x)).证明 两个原方程(f(x))~(1/2)±(g(x))~(1/2)=(R(x))~(1/2)±(S(x))~(1/2)化为f(x)-g(x)/(f(x)~(1/2)±(g(x))~(1/2)=R(x)-S(x)/(R(x))~(1/2)±(S(x))~(1/2)  相似文献   

18.
正一元高次方程在代数方程中占有重要地位.在本文中,给出了几类一元高次方程的解法.1型如ax2n+1+bx2n+ax2n-1+bx2n-2+…+ax+b=0的方程.例1解方程3x5+5x4+3x3+5x2+3x+5=0解:原方程可同解变形为3x(x4+x2+1)+5(x4+x2+1)=0,即(3x+5)(x4+x2+1)=0.  相似文献   

19.
解:由反函数的意义知,求f~(-1)(1)的值,相当于解方程f(x)=1,即解方程1g(x~2 11x 8)-1g(x 1)=1。 解这个方程,得x_1=-2,x_2=1,检验知x=-2是增根,所以,x=1是原方程的解,故f~(-1)(1)=1。  相似文献   

20.
用适当方法构造与原问题有关的方程,利用方程的知识使原题获解,此为“辅助方程法”。一、解方程(组) 例1 解关于x的方程 x~4 6x~3-2(a-3)x~2 2(3a 4)x 2a a~2=0 解:化为a的方程: a~2-2(x~2-3x-1)a (x~4-6x~3 6x~2 8x)=0解得a=x~2-4x,a=x~2-2x-2。故得原方程的解x_(1,2)=2±4~(1/2) a,x_(3,4)=1±(3 a)~(1/2)(注;a<-3时,有虚根)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号