首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the problem of non-fragile sliding mode control is investigated for a class of uncertain switched systems with state unavailable. First, a non-fragile sliding mode observer is constructed to estimate the unmeasured state. And then, a state-estimate-based sliding mode controller is designed, in which a weighted sum approach of the input matrices is utilized to obtain a common sliding surface. It is shown that the reachability of the specified sliding surface can be ensured by the present sliding mode controller. Moreover, the exponential stability of the sliding mode dynamics is analyzed by adopting the average dwell time method. Finally, a numerical simulation is given to demonstrate the effectiveness of the results.  相似文献   

2.
This paper deals with the containment control problem for multi-agent systems with exogenous disturbances. A disturbance observer-based control approach is employed to estimate the disturbances generated by an exogenous system. Consequently, distributed disturbance observer-based containment control protocols are proposed by using the state feedback control and the output feedback control, respectively. Furthermore, with the help of algebraic graph theory and Lyapunov stability theory, sufficient conditions are established to ensure that multi-agent systems with exogenous disturbances can achieve containment control via the disturbance observer-based approach. Finally, the effectiveness of our theoretical results is verified by providing numerical simulation examples.  相似文献   

3.
Disturbance observer-based control allows to compensate unknown inputs, however, in most cases, requiring their integer-order differentiability. In this paper, a novel disturbance observer-based state feedback controller is proposed to compensate a more general class of fractional-, but not necessarily integer-order, differentiable unknown inputs. The proposed fractional PI-like structure yields precise conditions for feedback gain tuning. Remarkably, the resulting controller rejects non-differentiable disturbances with a smooth controller, guaranteeing robustness, an outstanding features for tracking tasks, under a prescribed practical stability regimen. A comparison to a fractional sliding mode observer is conducted via simulations to highlight the reliability of the proposed scheme.  相似文献   

4.
In this work, a new design method of model predictive control (MPC) is proposed for uncertain systems with input constraints. By using a new method to deal with actuator constraints, our method can reduce the conservativeness. For the design of the robust MPC controllers, a sequence of feedback control laws is used and a parameter-dependent Lyapunov function is chosen to further reduce the conservativeness. The effectiveness and performance of our MPC design method are demonstrated by an example.  相似文献   

5.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

6.
This paper develops a robust adaptive neural network (NN) tracking control scheme for a class of strict-feedback nonlinear systems with unknown nonlinearities and unknown external disturbances under input saturation. The radial basis function NNs with minimal learning parameter (MLP) are employed to online approximate the uncertain system dynamics. The adaptive laws are designed to online update the upper bound of the norm of ideal NN weight vectors, and the sum of the bounds of NN approximation errors and external disturbances, respectively. An auxiliary dynamic system is constructed to generate the augmented error signals which are used to modify the adaptive laws for preventing the destructive action due to the input saturation. Moreover, the command filtering backstepping control method is utilized to overcome the shortcoming of dynamic surface control method, the tracking-differentiator-based control method, etc. Our proposed scheme is qualified for simultaneously dealing with the input saturation effect, the heavy computational burden and the “explosion of complexity” problems. Theoretical analysis illuminates that our scheme ensures the boundedness of all signals in the closed-loop systems. Simulation results on two examples verify the effectiveness of our developed control scheme.  相似文献   

7.
In this study, the problem of observer-based control for a class of nonlinear systems using Takagi-Sugeno (T-S) fuzzy models is investigated. The observer-based model predictive event-triggered fuzzy reset controller is constructed by a T-S fuzzy state observer, an event-triggered fuzzy reset controller, and a model predictive mechanism. First, the proposed controller utilizes the T-S fuzzy model and is constructed based on state observations and discrete sampling output, which can greatly reduce the occupation of communication resources. Then, the model predictive strategy for reset law design is designed in this paper. With a reasonable reset of the controller state at certain instants, the performance of the reset control systems is improved. Finally, the validity of the proposed method is illustrated by simulation. The merits of the proposed controller in improving transient performance and reducing the communication occupation are demonstrated by comparing its results with the output feedback fuzzy controller and the first-order fuzzy reset controller.  相似文献   

8.
This paper studies the control problem of uncertain stochastic systems, which takes into account the impact of network attacks. The types of network attacks considered are denial-of-service (DoS) attacks, deception attacks and replay attacks. In order to save network resources and improve communication utilization, the static event-triggered mechanism and adaptive event-triggered mechanism are cited respectively. Firstly, a new Lyapunov-Krasovskii functional is constructed, employing improved Wirtinger-based integral inequality and Jensens inequality, the criteria on stochastic stability in the mean square for uncertain stochastic systems are proposed. Secondly, the design methods of static event-triggered controller and adaptive event-triggered controller are given respectively. Finally, a practical example is given to manifest the effectiveness of the theoretical results.  相似文献   

9.
In this paper, a subspace predictive control (SPC) method with a novel data-driven event-triggered law is proposed for linear time-invariant systems with unknown model parameters. Based on the conventional SPC method, the event-triggered law is introduced to substitute the typical receding horizon optimization, which reduces the data computation load of the traditional SPC method. The key parameters of the event-triggered law are derived by the Q-learning method via system data and the input-to-state stability of the system can be ensured with the designed event-triggered law. The simulation results illustrate the effect and merits of the proposed method with comparisons.  相似文献   

10.
In this paper, an asymptotic adaptive dynamic surface tracking control strategy is investigated for uncertain full-state constrained nonlinear systems subject to parametric uncertainties and external disturbances. A novel disturbance estimator (DE) is firstly used to compensate for external disturbances. The parametric uncertainties are accordingly handled via a synthesized adaptive law. Then, by using the barrier Lyapunov function (BLF) and dynamic surface control (DSC), an appropriate backstepping design framework employing a novel adaptive-gain nonlinear filter is given, which avoids the “explosion of complexity” and relieves the conservatism of filter gain selection. The theoretical analysis reveals the asymptotic tracking performance is assured with the proposed controller. In the end, some simulation cases demonstrate the validity of the proposed controller.  相似文献   

11.
This paper focuses on mixed-objective dynamic output feedback robust model predictive control (OFRMPC) for the synchronization of two identical discrete-time chaotic systems with polytopic uncertainties, energy bounded disturbances, and input constraint. Using active control strategy, the chaos synchronization is transformed into standard dynamic OFRMPC scenarios tractable through receding horizon min–max optimization. Utilizing the notion of quadratic boundedness, the augmented closed-loop stability is further characterized. Then, the concepts of mixed performance criteria are firstly incorporated into the dynamic OFRMPC scheme to guarantee both the robust stability and the disturbance attenuation ability while preserving better dynamical behaviors. Necessary and/or sufficient conditions for desired mixed-objective dynamic OFRMPC are formulated involving linear matrix inequalities (LMIs). Finally, two numerical examples are given to demonstrate the theoretical results.  相似文献   

12.
13.
14.
This paper presents a Finite Spectrum Assignment (FSA) with a generalized feedforward control for Linear Time-Invariant (LTI) systems with input delay and bounded unmeasured disturbances. A novel two-layer feedforward strategy is proposed in order to deal with matched and unmatched disturbances. The proposed control law is based on a filtered disturbance estimator and a generalized feedforward compensation which can be applied to any Artstein based predictor. An optimization design procedure is presented to improve disturbance attenuation properties in the presence of band-limited disturbances. The conditions to achieve disturbance rejection are also shown to deal with deterministic disturbance models. Furthermore, the proposed solution can be used to define either continuous-time or discrete-time control algorithms. Two case studies are presented to illustrate the benefits of the new approach.  相似文献   

15.
In this paper, a novel composite controller is proposed to achieve the prescribed performance of completely tracking errors for a class of uncertain nonlinear systems. The proposed controller contains a feedforward controller and a feedback controller. The feedforward controller is constructed by incorporating the prescribed performance function (PPF) and a state predictor into the neural dynamic surface approach to guarantee the transient and steady-state responses of completely tracking errors within prescribed boundaries. Different from the traditional adaptive laws which are commonly updated by the system tracking error, the state predictor uses the prediction error to update the neural network (NN) weights such that a smooth and fast approximation for the unknown nonlinearity can be obtained without incurring high-frequency oscillations. Since the uncertainties existing in the system may influence the prescribed performance of tracking error and the estimation accuracy of NN, an optimal robust guaranteed cost control (ORGCC) is designed as the feedback controller to make the closed-loop system robustly stable and further guarantee that the system cost function is not more than a specified upper bound. The stabilities of the whole closed-loop control system is certified by the Lyapunov theory. Simulation and experimental results based on a servomechanism are conducted to demonstrate the effectiveness of the proposed method.  相似文献   

16.
A discrete-time output feedback quasi-sliding mode control scheme is proposed to realize the problem of robust tracking and model following for a class of uncertain linear systems in which states are unavailable and estimated states are not required. The proposed scheme guarantees the stability of the closed-loop system and achieves a very small ultimate boundedness of the tracking error in the presence of matched uncertain parameters and external slow disturbances. This scheme ensures the robustness to matched parametric uncertainties and disturbances. Since the proposed controller is designed without any switching element, the chattering phenomenon is eliminated. Furthermore, the knowledge of upper bound of uncertainties is not required. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

17.
A novel offset-free trajectory tracking control strategy is proposed for a hypersonic vehicle under external disturbances and parameter uncertainties. In order to realize the real-time control for the hypersonic vehicle, the predictive control law is divided into the on-line design and off-line design. Unlike general nonlinear disturbance observer-based control which involves designing the disturbance compensation strategy, the influences of the disturbances on the velocity and altitude are attenuated by the direct feedback compensation (DFC). Particularly, the offset-free tracking feature is proved for the output reference signal. Simulations show that the real-time control can be realized for the hypersonic vehicle, the controls and angle of attack are all in their given constraint scopes, and the velocity and altitude can track the given references accurately even under mismatched disturbances.  相似文献   

18.
This paper presents a sampled-data predictive control strategy for a class of uncertain continuous-time Markovian jump linear system (MJLS) with time-varying delay. The system under consideration covers MJLS with completely known jump rates and arbitrary switched linear system. The predictive formulation utilizes both off-line and on-line optimization paradigms. The feasibility of the control scheme and the stability of the closed-loop system are investigated by introducing a modified stochastic invariant ellipsoid. The conditions for the existence of a stabilizing optimal controller for the underlying system are obtained via the semi-definite programming (SDP). A numerical example is given to verify efficiency and potential of the developed approach.  相似文献   

19.
This paper investigates the decentralized tracking control problem for a class of strict-feedback interconnected nonlinear systems with unknown parameters, where the system states are unmeasurable and the interconnections are unknown. Different from the existing results, where the output is available all the time, we consider the case that the output is only available at the sampled instants, which means the failure of existing methods. By introducing a kind of sampled observer for each subsystem, the system states and unknown parameters are jointly estimated. Based on which, a totally decentralized output feedback control scheme is developed to achieve the desired tracking performance by applying backstepping technique, where a compensation mechanism is utilized to address the unknown interconnections from other subsystems. Subsequently, by using Lyapunov stability theory, it is proved that all the signals in the closed-loop system are bounded and the tracking errors converge to an adjustable neighbourhood of the origin. Finally, an example is used to illustrate the effectiveness of the proposed method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号