首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the finite horizon linear quadratic (LQ) Stackelberg game for stochastic systems with Poisson jumps under the open-loop information structure. First, the follower solves a LQ stochastic optimal control problem with Poisson jumps. With the aid of an introduced generalized differential Riccati equation with Poisson jumps (GDREP), the sufficient conditions for the optimization of the follower are put forward. Then, the leader faces an optimal control problem for a forward-backward stochastic differential equation with Poisson jumps (FBSDEP). By introducing new state and costate variables, a sufficient condition for the existence and uniqueness of the open-loop Stackelberg strategies is presented in terms of the solvability of two differential Riccati equations and a convexity condition. In addition, the state feedback representation of the open-loop Stackelberg strategies is obtained via the related differential Riccati equation. Finally, two examples shed light on the effectiveness of the obtained results.  相似文献   

2.
This paper investigates the robust output regulation problem for stochastic systems with additive noises. As is known, for the output regulation control problem, a general method is to regard that the system is disturbed by an autonomous exosystem (which is consisted by external disturbances and reference signals), and for the system disturbed by the white noise, the stochastic differential equations (SDEs) should be utilized in modeling, accordingly, a controller with a feedforward regulator is constructed for the stochastic system with an exosystem, which can not only cancel the external disturbance, but also transform the trajectory tracking problem into the stabilization problem; In consideration of the state variables in stochastic systems cannot be measured completely, we embed an observer to the controller, such that the random interference can be suppressed, and the trajectory tracking can be achieved. Based on the stochastic control theory, the criteria of the exponential practical stability in the mean square is presented for the closed-loop system, finally, through tuning the controller parameters, the mean square of the tracking error can converge to an arbitrarily small neighborhood of the origin.  相似文献   

3.
This paper deals with the feedback Stackelberg strategies for the discrete-time mean-field stochastic systems in infinite horizon. The optimal control problem of the follower is first studied. Employing the discrete-time linear quadratic (LQ) mean-field stochastic optimal control theory, the sufficient conditions for the solvability of the optimization of the follower are presented and the optimal control is obtained based on the stabilizing solutions of two coupled generalized algebraic Riccati equations (GAREs). Then, the optimization of the leader is transformed into a constrained optimal control problem. Applying the Karush-Kuhn-Tucker (KKT) conditions, the necessary conditions for the existence and uniqueness of the Stackelberg strategies are derived and the Stackelberg strategies are expressed as linear feedback forms involving the state and its mean based on the solutions (Ki,K^i), i=1,2 of a set of cross-coupled stochastic algebraic equations (CSAEs). An iterative algorithm is put forward to calculate efficiently the solutions of the CSAEs. Finally, an example is solved to show the effectiveness of the proposed algorithm.  相似文献   

4.
This paper focus on the distributed fusion estimation problem for a multi-sensor nonlinear stochastic system by considering feedback fusion estimation with its variance. For any of the feedback channels, an event-triggered scheduling mechanism is developed to decide whether the fusion estimation is needed to broadcast to local sensors. Then event-triggered unscented Kalman filters are designed to provide local estimations for fusion. Further, a recursive distributed fusion estimation algorithm related with the trigger threshold is proposed, and sufficient conditions are builded for boundedness of the fusion estimation error covariance. Moreover, an ideal compromise between fusion center-to-sensors communication rate and estimation performance is achieved. Finally, validity of the proposed method is confirmed by a numerical simulation.  相似文献   

5.
This paper is concerned with the problem of global finite-time stabilization via output feedback for a class of switched stochastic nonlinear systems whose powers are dependent of the switching signal. The drift and diffusion terms satisfy the lower-triangular homogeneous growth condition. Based on adding a power integrator technique and the homogeneous domination idea, output-feedback controllers of all subsystems are constructed to achieve finite-time stability in probability of the closed-loop system. Distinct from the existing results on switched stochastic nonlinear systems, the delicate change of coordinates are introduced for dominating nonlinearities. Moreover, by incorporating a multiplicative design parameter into the coordinate transformations, the obtained control method can be extended to switched stochastic nonlinear systems with nonlinearities satisfying the upper-triangular homogeneous growth condition. The validity of the proposed control methods is demonstrated through two examples.  相似文献   

6.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

7.
8.
9.
This paper is devoted to the adaptive finite-time control for a class of stochastic nonlinear systems driven by the noise of covariance. The traditional growth conditions assumed on the drift and diffusion terms are removed through a technical lemma, and the negative effect generated by unknown covariance noise is compensated by combining adaptive control technique with backstepping recursive design. Then, without imposing any growth assumptions, a smooth adaptive state-feedback controller is skillfully designed and analyzed with the help of the adding a power integrator method and stochastic backstepping technique. Distinctive from the global stability in probability or asymptotic stability in probability obtained in related work, the proposed design algorithm can guarantee the solution of the closed-loop system to be finite-time stable in probability. Finally, a stochastic simple pendulum system is skillfully constructed to demonstrate the effectiveness of the proposed control scheme.  相似文献   

10.
This paper investigates the problem of stochastic stability and stabilization of stochastic Markovian jump delay systems (SMJDSs) based on LaSalle theorem. The time delays are assumed to be time-varying and numerous stochastic disturbances are considered. Attention is focused on the design of the mode-dependent state feedback controller for SMJDSs based on LaSalle theorem such that the closed-loop SMJDSs are almost surely asymptotically stable. The sufficient conditions for the solvability of the state feedback control problem are obtained in terms of linear matrix inequalities (LMIs). When the LMIs are feasible, the desired state feedback controller is also given. Two numerical examples including the vertical take-off and landing (VTOL) helicopter system are employed to demonstrate the effectiveness and usefulness of the method proposed in this paper  相似文献   

11.
This paper investigates the output feedback control for a class of stochastic nonlinear time delay systems based on dynamic gain technique. The nonlinear terms of the stochastic system satisfy linear growth condition on unmeasured state variables with the output dependent incremental rate, which makes the studied time delay stochastic system more general than the exiting results. Firstly, the full order dynamic gain observer is constructed. Then, the linear-like controller is designed without using recursive design method. Next, the stability analysis is given and a useful corollary is obtained. Finally, a simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

12.
13.
14.
For a class of stochastic strict-feedback nonlinear systems subject to different time delay states, this paper mainly concerns the problem of global asymptotic stabilization. Two new control strategies that the memoryless parameter-dependent state feedback control and the memoryless parameter-dependent output feedback control are taken into consideration, respectively. By skillfully constructing the Lyapunov-Krasovskii (L-K) functional, taking the proper determined parameter and employing the stochastic nonlinear time delay system (SNTDS) stability theory, the global asymptotic stability of the stochastic closed-loop system can be achieved. The proposed output feedback control scheme is finally utilized for the control design of the one-link manipulator system and two-stage chemical reactor system, which can verify the availability of the control approach.  相似文献   

15.
This paper considers the parameter identification problem of a bilinear state space system with colored noise based on its input-output representation. An input-output representation of a bilinear state-space system is derived for the parameter identification by eliminating the state variables in the model, and a recursive generalized extended least squares algorithm is presented for estimating the parameters of the obtained model. Furthermore, a three-stage recursive generalized extended least squares algorithm is proposed for reducing the computational cost. The validity of the proposed method is evaluated through a numerical example.  相似文献   

16.
This paper considers the stabilization and destabilization of a given nonlinear system by an intermittent Brownian noise perturbation. We give some distinct conditions and conclusions on almost sure exponential stability and instability, which are related to the control period T and the noise width δ. These results are then exploited to examine stabilization and destabilization via intermittent stochastic perturbation and applied to the stabilization of a memristor-based chaotic system. Two numerical examples are presented to illustrate the theoretical results.  相似文献   

17.
In this paper, the linear-quadratic-Gaussian (LQG) optimal control problem is considered and a robust minimax controller composed of the Kalman filter and the optimal regulator is synthesized to guarantee the asymptotic stability of the discrete time-delay systems under both parametric uncertainties and uncertain noise covariances. Designed procedures are finally elaborated with an illustrative example.  相似文献   

18.
19.
This paper considers a trilayer Stackelberg game problem for nonlinear system with three players. A novel performance function is defined for each player, which depends on the coupling relationships with the other two players. The coupled Hamilton–Jacobi–Bellman (HJB) equations are built from the performance functions, and the optimal control polices of three players are obtained based on the Bellman’s principle of optimality. Because of the nonlinearity and coupling characteristics, a policy iteration (PI) algorithm with a three-layer decision-making framework is developed to online learn the coupled HJB equations. In order to implement the algorithm, we construct a critic-action neural network (NN) structure and design a NN approximation-based iteration algorithm. Finally, a simulation example is presented to verify the effectiveness of the proposed method.  相似文献   

20.
This paper investigates mean square leaderless consensus of networked nonlinear multi-agent systems. An efficient distributed event-triggered mechanism based on stochastic sampling is introduced to reduce the communication cost and controller updates. The stochastic sampling interval randomly switches between two given values. Mean square consensus criteria for multi-agent systems with strongly connected networks or networks containing directed spanning trees are derived, respectively. Moreover, the case with a special event-triggered weighting matrix and the case without even-triggered strategies are also discussed. Finally, an example is given to verify the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号