首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study is concerned with the problem of reachable set estimation for linear systems with time-varying delays and polytopic parameter uncertainties. Our target is to find an ellipsoid that contains the state trajectory of linear system as small as possible. Specifically, first, in order to utilize more information about the state variables, the RSE problem for time-delay systems is solved based on an augmented Lyapunov-Krasovskii functional. Second, by dividing the time-varying delay into two non-uniformly subintervals, more general delay-dependent stability criteria for the existence of a desired ellipsoid are derived. Third, the integral interval is decomposed in the same way to estimate the bounds of integral terms more exactly. Fourth, an optimized integral inequality is used to deal with the integral terms, which is based on distinguished Wirtinger integral inequality and Reciprocally convex combination inequality. This can be regard as a new method in the delay systems. Finally, three numerical examples are presented to demonstrate the effectiveness and merits of the theoretical results.  相似文献   

2.
The problem of the reachable set (RS) control of sliding mode control (SMC) for a class of singular systems with or without time-varying delay under zero initial conditions is studied. The purpose is to get an RS boundary containing all states of the system by designing an SMC. Firstly, singular systems with or without time-varying delay are decomposed into slow and fast subsystems by using the decomposition approach. Then, the augmented Lyapunov functional is built utilizing the decomposed state vector. The SMC is designed based on the exponential reaching criterion, resulting in the corresponding closed-loop control system (CLCS) construction. As a consequence, an RS criterion is constructed by employing the inequality scaling approach and the free-weighting matrix in conjunction with the linear matrix inequality (LMI). Finally, the validity and primacy of the results are provided by two numerical and practical examples.  相似文献   

3.
The problem of reachable set estimation is studied for discrete-time bilinear system in this paper. Time-varying delays and bounded input disturbances are both considered in bilinear system. The aim is to find reachable set that converges from all the states of system with initial conditions. By constructing Lyapunov–Krasovskii functional, sufficient delay-dependent less conservative stable conditions of reachable set estimation are obtained for bilinear delay system via the reciprocally convex combination and delay partition approaches. The derived theorem can guarantee that all the states of system with initial conditions from some domain are bounded in an ellipsoid and all the states from other domain are converged exponentially within a ball. One simulation example is presented to illustrate the correctness of the derived result in this paper.  相似文献   

4.
This paper investigates the time-varying output formation tracking problem of heterogeneous multi-agent systems subjected to model uncertainties and external disturbances via adaptive event-triggered mechanism. Firstly, an adaptive distributed event-triggered observer is constructed to acquire the leader’s state and a time-varying formation output tracking controller utilizing sliding mode method is proposed to deal with the model uncertainties and external disturbances can be addressed. Secondly, an algorithm is given to claim the design procedures of the event-triggered based controller and asymptotic convergence of the controller is proved based on Lyapunov theory. Thirdly, Zeno-behavior is proved to be excluded strictly. Finally, a numerical example is given to illustrate the effectiveness of the proposed algorithm.  相似文献   

5.
6.
This paper is concerned with the problems of reachable set estimation and state-feedback controller design for linear systems with distributed delays and bounded disturbance inputs. The disturbance inputs are assumed to be either unit-energy bounded or unit-peak bounded. First, based on the Lyapunov–Krasovskii functional approach and the delay-partitioning technique, delay-dependent conditions for estimating the reachable set of the considered system are derived. These conditions guarantee the existence of an ellipsoid that contains the system state under zero initial conditions. Second, the reachable set estimation is taken into account in the controller design. Here, the purpose is to determine an ellipsoid and find a state-feedback controller such that the determined ellipsoid contains the reachable set of the resulting closed-loop system. Sufficient conditions for the solvability of the control synthesis problem are obtained. Based on these results, the problem of how to design a controller such that the state of the resulting closed-loop system is contained in a prescribed ellipsoid is studied. Finally, numerical examples and simulation results are provided to show the effectiveness of the proposed analysis and design methods.  相似文献   

7.
8.
This paper is concerned with the admissibility analysis for the singular system with a periodically time-varying delay. By dividing the periodic delay interval into monotonically decreasing and increasing intervals, a novel Lyapunov–Krasovskii functional (LKF) is developed in virtue of the looped functional philosophy, relaxing the positive definition of the LKF and making full use of the system state and the time-varying delay function information. Then, a new admissibility condition is derived by combining the newly constructed LKF and the second-order canonical Bessel–Legendre integral inequality. Finally, two numerical examples are given to demonstrate the superiority of the developed method.  相似文献   

9.
Load frequency control of power systems is a very important approach to keep stability and security. Unfortunately, the traditional load frequency control is not effective because of the introduction of communication networks in multi-area power systems. In order to overcome this difficulty, sampling-based load frequency control for multi-area power systems is studied via an event-triggered detector. Unlike published works, an adaptive law for event-triggered scheme is given. Since multi-area power systems with event-triggered scheme are hybrid systems, there are a lot of challenges for analysing load frequency control problem. Some lemmas and a new Lyapunov function are developed to overcome these challenges. The obtained stability and stabilization criteria can provide a tradeoff to balance the required communication resources and the desired control performance. Numerical examples verify effectiveness of the obtained results.  相似文献   

10.
The problem of robust finite-time stability (RFTS) for singular nonlinear systems with interval time-varying delay is studied in this paper. Some delay-dependent sufficient conditions of RFTS are derived in the form of the linear matrix inequalities (LMIs) by using Lyapunov–Krasovskii functional (LKF) method and singular analysis technique. Two examples are provided to show the applications of the proposed criteria.  相似文献   

11.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

12.
13.
14.
This paper addresses the problem of synchronization control of neutral-type neural networks with sampled-data, where sampled data will be over a communication network before received by controller. Generally, the communication network is with a bandwidth-limited communication channel. To reduce network burden, an event-triggered scheme is designed between the sampler and communication network. A weak synchronization conditions are derived by using our proposed integral inequality. Finally, a numerical example is given to illustrate the effectiveness and advantage of the proposed results.  相似文献   

15.
《Journal of The Franklin Institute》2021,358(18):10079-10094
This paper is focused on the distributed estimation issue in the form of set-membership (SM) for a class of discrete time-varying systems suffering mix-time-delays and state-saturations. The phenomena of time-delays and state-saturations are introduced to better describe insightful engineering. During local measurements transmission between sensors over a resource-limited sensor network, to prevent data collisions and resource-consumption, a newly dynamic event-triggering strategy (DETS) is designed to dispatch the local measurements transmission for each sensor to its neighbors. Compared with the most existing static ETSs, this DETs can mitigate the total number of triggering times and enlarge interval time between consecutive triggering instants. Then, some novel adequate criteria for designing the desired event-based SM estimators are derived such that the plant’s true state always resides in each sensor’s ellipsoidal region regardless of the simultaneous presence of bounded noises, mixed time delays and state-saturations. Subsequently, a recursive optimization algorithm is formulated such that the minimal ellipsoids, the estimators gains and event-triggering weighted matrices are acquired simultaneously. A verification simulation is presented to illustrate the advantages of the design approach of the developed state estimator.  相似文献   

16.
The problem of event-triggered leader-following consensus control for semi-Markov multi-agent systems is investigated in this paper. A semi-Markov process is used to describe the sudden parameter changes between every agent. An adaptive event-triggered control strategy is proposed to make a balance between reducing unnecessary communication and meeting the required performance. A control protocol which can resist actuator faults is used to ensure the reliable leader-following consensus. By employing the Lyapunov–Krasovskii functional method, some sufficient conditions are provided to guarantee that the leader-following consensus can be achieved in mean-square sense. The consensus controller and the event-triggered parameter can be co-designed. Finally, the effectiveness of the proposed method is verified by a F-404 aircraft engine system.  相似文献   

17.
This paper deals with the stability analysis and fuzzy stabilizing controller design for fuzzy singular systems with time-varying delay. The time-varying delay is composed of two parts: constant part and time-varying part. Based on the idea of delay partitioning, a new Lyapunov–Krasovskii functional is proposed to develop the new delay-dependent stability criteria, which ensures the considered system to be regular, impulse-free and stable. Furthermore, the desired fuzzy controller gains are also presented by solving a set of strict linear matrix inequalities (LMIs). Some numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.  相似文献   

18.
The paper is a study of quantized control for stochastic Markov jump systems with interval time-varying delays and bounded system noise under event-triggered mechanism. A new scheme of Lyapunov–Krasovskii functional which contains the quadratic terms and integral terms is presented. Then quadratic convex technology, the theory of stochastic switching system, and logarithmic quantizer are applied to this paper. The design of quantized controller is obtained with those methodologies. Different from previous results, our derivation applies the idea of second-order convex combination. The conservatism of stability criteria for systems is reduced by using this method. A numerical example under different conditions is given to demonstrate the effectiveness and validity of the new design techniques.  相似文献   

19.
20.
This paper investigates the problem of mean-square exponential stability for a class of discrete-time nonlinear singular Markovian jump systems with time-varying delay. The considered systems are with mode-dependent singular matrices Er(k)Er(k). By using the free-weighting matrix method and the Lyapunov functional method, delay-dependent sufficient conditions which guarantee the considered systems to be mean-square exponentially stable are presented. Finally, some numerical examples are employed to demonstrate the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号