首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the E-exponential stability of mode-dependent linear switched singular systems with stable and unstable subsystems. First, by constructing an appropriate multiple discontinuous Lyapunov function, new sufficient conditions of E-exponential stability for linear switched singular systems are established. Considering the feature of mode-dependent average dwell time switching, we adopt the switching strategy where fast switching and slowing switching are respectively applied to unstable and stable subsystems. Compared with the existing results, our approach is more flexible and tighter bounds can be obtained. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.  相似文献   

2.
This paper investigates hybrid observer design of a class of unknown input switched nonlinear systems. The distinguishing feature of the proposed method is that the stability of all subsystems of the error switched systems is not necessarily required. First, an output derivative-based method and time-varying coordinate transformation are considered to eliminate the unknown input. Then in order to maintain a satisfactory estimation performance, an impulsive full-order and switched reduced-order observer are developed with a pair of upper and lower dwell time bounds and constructing time-varying Lyapunov functions combined with convex combination technique. In addition, the time-varying Lyapunov functions method is also used to analyze the stability of a class of error switched nonlinear systems with stable subsystems. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

3.
This paper investigates the output regulation problem for a class of switched nonlinear systems with at least a feedback incrementally passive subsystem via average dwell time method. First, the output regulation problem for switched nonlinear system via full information feedback is solved. The stabilizing controllers consist of the state feedback controllers and linear output feedback controllers. In some particular cases, it is unnecessary to verify that all the solutions of the switched nonlinear system converge to the bounded steady-state solution, while we only have to verify the regulated outputs converge to zero directly. Second, a dynamic error-feedback stabilizer for each subsystem and a switched internal model whose subsystems all are incrementally passive are designed to solve the output regulation problem for the switched nonlinear system under a composite switching signal with average dwell times. The stabilizer and the internal model are interconnected in a more simple way and allowed to switch asynchronously. Finally, two examples are provided to show the effectiveness of the obtained results.  相似文献   

4.
This paper presents novel approaches for stability analysis of switched linear time-delay stochastic systems under dwell time constraint. Instead of using comparison principle, piecewise switching-time-dependent discretized Lyapunov functions/functionals are introduced to analyze the stability of switched stochastic systems with constant or time-varying delays. These Lyapunov functions/functionals are decreasing during the dwell time and non-increasing at switching instants, which lead to two mode-dependent dwell-time-based delay-independent stability criteria for the switched systems without restricting the stability of the subsystems. Comparison and numerical examples are provided to show the efficiency of the proposed results.  相似文献   

5.
In this note, we will devote to investigate the stability of discrete-time switched positive linear time-varying systems (PLTVSs). Firstly, a new asymptotic stability criterion of discrete-time PLTVSs is obtained by using time-varying copositive Lyapunov functions (TVCLFs) and this criterion is then extended to the switched case based on the multiple TVCLFs. Furthermore, the sufficient conditions are derived for stability of discrete-time switched PLTVSs with stable subsystems by means of function-dependent average dwell time and function-dependent minimum dwell time. In addition, the stability sufficient conditions are drawn for the switched PLTVSs which contain unstable subsystems. It is worth noting that the difference of TVCLFs and multiple TVCLFs are both relaxed to indefinite in our work. The theoretical results obtained are verified by two numerical examples.  相似文献   

6.
In this paper, a new framework of the robust adaptive neural control for nonlinear switched stochastic systems is established in the presence of external disturbances and system uncertainties. In the existing works, the design of robust adaptive control laws for nonlinear switched systems mainly relies on the average dwell time method, while the design and analysis based on the model-dependent average dwell time (MDADT) method remains a challenge. An improved MDADT method is developed for the first time, which greatly relaxes the requirements of Lyapunov functions of any two subsystems. Benefiting from the improved MDADT, a switched disturbance observer for discontinuous disturbances is proposed, which realizes the real-time gain adjustment. For known and unknown piecewise continuous nonlinear functions, a processing method based on the tracking differentiator and the neural network is proposed, which skillfully guarantees the continuity of the control law. The theoretical proof shows that the semiglobal uniform ultimate boundedness of all closed-loop signals can be guaranteed under switching signals with MDADT property, and simulation results of the longitudinal maneuvering control at high angle of attack are given to further illustrate the effectiveness of the proposed framework.  相似文献   

7.
In this paper, the global output feedback tracking control is investigated for a class of switched nonlinear systems with time-varying system fault and deferred prescribed performance. The shifting function is introduced to improve the traditional prescribed performance control technique, remove the constraint condition on the initial value, and make the constraint bounds have more alternative forms. To estimate the unmeasured state variables and compensate the system fault, the switched dynamic gain extended state observer is constructed, which relaxes the traditional Lipschitz conditions on the nonlinear functions. Based on the proposed observer, by constructing the new Lyapunov function and using the backstepping method, the global robust output feedback controller is designed to make the output track the reference signal successfully, and after the adjustment time, the tracking error enters into the prescribed set. The stability of the system is analyzed by the average dwell time method. Finally, simulation results are given to illustrate the effectiveness of the proposed method.  相似文献   

8.
This paper deals with approximate bisimulation for the switched nonlinear system with mode-dependent dwell time. A criterion for incremental stability is presented for this switched nonlinear system by constructing incremental Lyapunov-like functions. Then for the case that all the subsystems are linear, a more solvable criterion is provided in terms of linear matrix inequalities. A symbolic model which is approximately bisimilar to the original switched nonlinear system is developed by using the grid-based approach, and the bisimilar precision is also given. Numerical examples are provided to show the application of the proposed results.  相似文献   

9.
In this paper, the multiple model strategy is applied to the adaptive control of switched linear systems to improve the transient performance. The solvability of the adaptive stabilization problem of each subsystem is not required. Firstly, the two-layer switching mechanism is designed. The state-dependent switching law with dwell time constraint is designed in the outer-layer switching to guarantee the stability of the switched systems. During the interval of dwell time constraint, the parameter resetting adaptive laws are designed in the inner-layer switching to improve the transient performance. Secondly, the minimum dwell time constraint providing enough time for multiple model adaptive control strategy to work fully and maintaining the stability of the switched systems is found. Finally, the proposed switched multiple model adaptive control strategy guarantees that all the closed-loop system signals remain bounded and the state tracking error converges to zero.  相似文献   

10.
This paper concerns an adaptive fuzzy tracking control problem for a class of switched uncertain nonlinear systems in strict-feedback form via the modified backstepping technique. The unknown nonlinear functions are approximated by the generalized fuzzy hyperbolic model (GFHM). It is shown that if the designed parameters in the controller and adaptive laws are appropriately selected, then all closed-loop signals are bounded and the stability of the system can be kept under average dwell time methods. In the end, simulation studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

11.
The paper investigates the design of hybrid state observer-based event-triggered controller for switched linear systems subject to quantized input and unknown but bounded additional disturbance and measurement noise. Firstly, by introducing a hybrid state observer and constructing a mode-dependent event-triggered mechanism, we design event-triggered controller for the considered switched linear systems. Then, by modeling the closed-loop system as an augmented asynchronous switched time-delay system, we deal with the asynchronous control problem caused by the switching between two consecutive trigger instants for the switched linear system. Thirdly, based on merging signal technique and multiple Lyapunov functional method, we obtain the sufficient criteria to guarantee the stability of the switched system when the switching signal meets an average dwell time condition, and further establish the hybrid observer-based event-triggered controller gains. Finally, a simulation example illustrates the validity of the results.  相似文献   

12.
This paper concerns the stability analysis problem for stochastic delayed switched genetic regulatory networks (GRNs) with both stable and unstable subsystems. By employing the piecewise Lyapunov functional method combined with the average dwell time approach, we show that if the average dwell time is chosen sufficiently large and the derivative of the Lyapunov-like function for unstable subsystems is bounded by certain kind of continuous function, then exponential stability criteria of a desired degree are guaranteed. The derived results show that the minimal average dwell time is proportional to the time delays. Finally, an example is given to illustrate the effectiveness of the derived results.  相似文献   

13.
《Journal of The Franklin Institute》2019,356(18):11520-11545
This paper focuses on the stability analysis and stabilization problem for a class of uncertain switched delay systems with Lévy noise and flexible switching signals which unify the high-frequency switching and low-frequency switching. By employing the theory of switched systems, mathematical induction and stochastic analysis technique, some sufficient conditions in form of algebraic inequalities are derived to guarantee the stability and stabilization of such systems. Different from dwell time and average dwell time, the proposed switching rule constrained the partial dwell-time shows that the switching number in the same time interval can be more elastic. Finally, numerical examples are implemented to illustrate the effectiveness of the theoretical results.  相似文献   

14.
This paper investigates the finite-time stability (FTS) and finite-time stabilization for a class of nonlinear singular time-delay Hamiltonian systems, and proposes a number of new results on these issues. Firstly, an equivalent form is obtained for the nonlinear singular time-delay Hamiltonian systems by the singular matrix decomposition method, based on which some delay-independent and delay-dependent conditions on the FTS are derived for the systems by constructing a kind of novel Lyapunov function. Secondly, we use the equivalent form as well as the energy shaping plus damping injection technique to investigate the finite-time stabilization problem for a class of nonlinear singular port-controlled Hamiltonian (PCH) systems with time delay, and present a specific control design procedure for the systems. Finally, we give several illustrative examples to show the effectiveness of the results obtained in this paper.  相似文献   

15.
This paper studies the finite-time guaranteed cost control problem for switched nonlinear stochastic systems with parameter uncertainties and time-varying delays. By choosing a model-dependent and delay-dependent Lyapunov-Krasovskii functional, applying the average dwell time approach and the Gronwall inequality, some novel sufficient conditions are derived to ensure that the switched nonlinear stochastic closed-loop system is finite-time stochastically stable and an upper bound is given on the performance index. The obtained nonlinear matrix is transformed into a linear matrix form, and then the feedback controller gains of the switched nonlinear stochastic systems with time-varying delay are obtained. Finally, two simulation examples are designed to verify the effectiveness of the suggested approach.  相似文献   

16.
This paper studies the problems of stability and H∞ model reference tracking performance for a class of asynchronous switched nonlinear systems with uncertain input delay. First, it is assumed switched controller and corresponding piecewise Lyapunov function are unknown but the derivative of piecewise Lyapunov function has a condition; this condition implies that the nominal system (system without input delay and disturbance) is exponentially stable by any switched controller which satisfies this condition. With this assumption, a proper Lyapunov–Krasovskii functional is constructed. By employing this new functional and average dwell time technique, the delay-dependent input-to-state stability criteria are derived under a certain delay bound; in addition, a mechanism which finds the upper bound of input delay is proposed. Finally, a kind of state feedback control law which fulfils condition of aforesaid piecewise Lyapunov function is introduced to guarantee the input-to-state stability and H∞ model reference tracking performance. Simulation examples are presented to demonstrate the efficacy of results.  相似文献   

17.
This paper investigates the standard H performance for a class of switched linear systems with time-varying delay in the framework of the delay-dependent/delay-independent minimum dwell time. For the studied systems, we first construct two types of multiple time-varying Lyapunov functionals, and then obtain the sufficient conditions by restricting the decay of the Lyapunov functional of the active subsystem and forcing “energy” of the overall switched system to decrease at switching instants by the proposed Lyapunov functionals to guarantee standard L2-gain performance meanwhile ensuring their internal stability with minimum dwell time switching. Finally, two examples are presented to illustrate the effectiveness of the proposed results.  相似文献   

18.
This paper investigates the stability and stabilization of switched linear singular systems with state reset at switching instants. Based on the dynamics decomposition of singular subsystems, a sufficient stability condition for the system with the given state reset is obtained. Then, the stabilization problem by state reset is investigated and an algorithm for computing the reset matrices is presented. The obtained results extend some previous works on both singular switched systems and reset control for normal switched systems. Finally, a numerical example is presented to illustrate the effectiveness of the proposed approach.  相似文献   

19.
The stability and stabilization synthesis problems of the switched positive systems (SPSs) with external disturbances are studied in this paper. For the studied SPSs, a weighted mode-dependent average dwell time (WMDADT) switched strategy has been adopted to analyze the above-mentioned issue, based on which the deficiencies of the existing ADT and MDADT switching techniques can be overcomed. By using the adopted strategy, some improved stability conditions that have less conservativeness are presented for the systems under investigation. Moreover, based on the developed stability conditions, an efficient controller design method avoiding computational complexity and eliminating the rank requirement of the controller is presented. In the end, the effectiveness of the method is verified by two numerical examples.  相似文献   

20.
This paper focuses on the problem of semi-global output-feedback stabilization for a class of switched nonlinear time-delay systems in strict-feedback form. A switched state observer is first constructed, then switched linear output-feedback controllers for individual subsystems are designed. By skillfully constructing multiple Lyapunov–Krasovskii functionals and successfully solving several troublesome obstacles, such as time-varying delay and switching signals and nonlinearity in the design procedure, the switched linear output-feedback controllers designed can render the resulting closed-loop switched system semi-globally stabilizable under a class of switching signals with average dwell time. Furthermore, under some milder conditions on nonlinearities, the semi-global output-feedback stabilization problem for switched nonlinear time-delay systems is also studied. Simulation studies on two examples, which include a continuous stirred tank reactor, are carried out to demonstrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号