首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the distributed adaptive fault estimation issue using practical fixed-time design is investigated for attitude synchronization control systems. A distributed fault estimation observer is proposed based on the fixed-time technique. Meanwhile, a novel fixed-time adaptive fault estimation algorithm is also constructed to guarantee convergence rate and improve estimation rapidity. The fault estimation error is uniformly ultimately bounded and is practically fixed-time stable, which converges to the neighborhood of the origin in a fixed time. Finally, simulation results of an attitude synchronization control system are presented to verify the effectiveness of proposed techniques.  相似文献   

2.
In this paper, the fixed-time synchronization between two delayed complex networks with hybrid couplings is investigated. The internal delay, transmission coupling delay and self-feedback coupling delay are all included in the network model. By introducing and proving a new and important differential equality, and utilizing periodically semi-intermittent control, some fixed-time synchronization criteria are derived in which the settling time function is bounded for any initial values. It is shown that the control rate, network size and node dimension heavily influence the estimating for the upper bound of the convergence time of synchronization state. Finally, numerical simulations are performed to show the feasibility and effectiveness of the control methodology by comparing with the corresponding finite-time synchronization problem.  相似文献   

3.
This paper presents a novel continuous fixed-time convergent control law for dynamic systems in the presence of unbounded disturbances. A continuous fixed-time convergent control is designed to drive all states of a multi-dimensional integrator chain at the origin for a finite pre-established (fixed) time, using a scalar input. The fixed-time convergence is established and the uniform upper bound of the settling time is computed. The designed control algorithm is applied to fixed-time stabilization of two mechatronic systems, a cart inverted pendulum and a single machine infinite bus turbo generator with main steam valve control.  相似文献   

4.
The present study investigates the fixed-time synchronization issue for delayed complex networks under intermittent pinning control. Different from some existing semi-intermittent controllers for finite/fixed-time synchronization, our pinning controller is designed in a complete intermittent way. In order to address the encountered theoretical analysis difficulties, a new differential inequality lemma is developed, which is suitable for the fixed-time synchronization studies under periodic or aperiodic complete intermittent control. Then, by using Lyapunov theory and pinning control approach, sufficient conditions are proposed which can guarantee the aperiodically completely intermittent-controlled delayed complex networks realizing fixed-time pinning synchronization. Moreover, the settling time is explicitly estimated, which is irrelevant to the initial values of our network systems. Additionally, as a special case, the scenario of periodic complete intermittent control is also discussed. At last, some simulation examples are utilized to confirm our theoretical outcomes.  相似文献   

5.
This paper mainly investigates the fixed-time synchronization of memristor-based fuzzy cellular neural network (MFCNN) with time-varying delay. By utilizing differential inclusion, set-valued map theory, the definitions of finite-time and fixed-time stability, we convert the fixed-time synchronization control of the drive-response MFCNN into the equivalent fixed-time stability problem of the error system between the drive-response systems. Some novel sufficient conditions are derived to guarantee the fixed-time synchronization of the drive-response MFCNN based on a simple Lyapunov function and a nonlinear feedback controller. Meanwhile, the settling time can be estimated by simple calculations. Furthermore, these fixed-time synchronization criteria here are easy to validate and extend to the MFCNN without time-varying delay and general memristor-based neural networks. Finally, three numerical examples are given to illustrate the correctness of the main results.  相似文献   

6.
This paper deals with the distributed secondary control problem for multiple distributed generators in an islanded microgrid. A distributed fixed-time secondary controller is designed for each generator using only its neighbors’ information, where saturation functions are introduced to the designed controllers to constrain the adverse influence of abnormal data from neighbors. Several indicator variables are introduced to reformulate the saturation function to reduce conservatism. The objective of this paper is to realize the recovery of the frequency and voltage as well as the active power-sharing within a fixed time. The fixed-time convergence of the proposed distributed control algorithm is analyzed through rigorous analysis. Also, the upper bound of the settling time is derived, which does not depend on the system’s initial state. Finally, a simulation example is utilized to verify the effectiveness of the proposed distributed control scheme by using the MATLAB/SimPowerSystems toolbox.  相似文献   

7.
《Journal of The Franklin Institute》2023,360(13):10251-10274
In this paper, in order to obtain a smaller estimation of settling time, reduce chattering caused by sign function and improve network communication efficiency, the fixed-time (FXT) synchronization of delayed BAM neural networks is analyzed based on some new FXT stability results and non-chattering quantized controllers. Firstly, by comprehensively discussing the conditions of power laws in differential inequalities, a new FXT stability lemma is presented and a smaller upper bound of settling time is estimated. Then, unlike previous controllers with sign functions, a non-chattering quantized state feedback control and a non-chattering quantized pinning control are designed, and some sufficient conditions are derived to ensure FXT synchronization of the established system. Finally, two numerical simulations are given to verify the effectiveness of the theoretical results. The results show that compared with the previous researches, this paper provides a smaller upper bound. However, the convergence time of the uncontrolled nodes is indirectly affected by the coupling of the controlled nodes and is much longer than the estimated upper bound.  相似文献   

8.
This paper is concerned with the global projective synchronization in fixed time for complex dynamical networks (CDNs) with nonidentical nodes in the presence of disturbances. Firstly, in order to realize the fixed-time projective synchronization of CDNs with matched disturbances, the second-order sliding mode is established, and the global fixed-time reachability of sliding manifolds is analyzed. The fixed-time stability of the sliding mode dynamics is also proved analytically based on Lyapunov stability theory. Moreover, the fixed convergence time of both reaching and sliding mode phases can be adjusted to any desired values in advance by the choice of the designable parameters. Secondly, in order to realize the fixed-time projective synchronization of CDNs with mismatched disturbances, a super-twisting-like (STL) controller, which does not require the information of the derivative of the sliding variable, is designed, and the synchronization condition is addressed in terms of linear matrix inequalities (LMIs). By the proposed controllers, continuous control signals can be provided to reduce the chattering effect and improve the control accuracy. Finally, two numerical examples are given to demonstrate the validity of the theoretical results and the the feasibility of the proposed approaches.  相似文献   

9.
Multiplex networks involve different types of synchronization due to their complex spatial structure. How to control multiplex networks to achieve different types of synchronization is an interesting topic. This paper considers the fixed-time synchronization of multiplex networks under sliding mode control (SMC). Firstly, for realizing three types of synchronization of multiplex networks in a fixed time, a unified sliding mode surface (SMS) is established. After that, based on the theory of SMC, a sliding mode controller (SMCr) which is more intelligent and has a simpler form than those in the existing literature is put forward for multiplex networks. It can not only guarantee the emergence of sliding mode motion, but also can realize three different kinds of synchronization by adjusting some parameters or even one parameter of the controller. Based on some theories of fixed-time stability, this paper deduces several sufficient conditions for the trajectories of the system to reach the preset SMS in a fixed time, and derives some sufficient conditions for multiplex networks to realize three different types of fixed-time synchronization. At the same time, the settling time which can reveal what factors determine the fixed-time synchronization in multiplex networks is obtained. Finally, in numerical simulations, different chaotic systems are set for each layer of multiplex networks to represent the nodes of different layers, which can prove that the theoretical results are practical and effective.  相似文献   

10.
This paper presents a robust scheme for fixed-time tracking control of a multirotor system. The aircraft is subjected to matched lumped disturbances, i.e., unmodeled dynamics, parameters uncertainties, and external perturbations besides measurement noise. Firstly, a novel Nonlinear Homogeneous Continuous Terminal Sliding Manifold (NHCTSM) based on the weighted homogeneity theory is presented. The sliding manifold is designed with prescribed dynamics featuring Global Asymptotic Stability (GAS) and fixed-time convergence. Then, a novel Fixed-time Non-switching Homogeneous Nonsingular Terminal Sliding Mode Control (FNHNTSMC) is proposed for the position and attitude loops by employing the developed NHCTSM and an appropriate reaching law. Moreover, the control framework incorporates a disturbance observer to feedforward and compensate for the disturbances. The designed control scheme can drive the states of the system to the desired references in fixed-time irrespective of the values of the Initial Conditions (ICs). Since the existing works on homogeneous controllers rely on the bi-limit homogeneity concept in the convergence proofs, the estimate of the settling-time or its upper-bound cannot be given explicitly. In contrast, this study employs Lyapunov Quadratic Function (LQF) and Algebraic Lyapunov Equation (ALE) in the stability analysis of both controller and observer. Following this method, an expression of the upper-bound of the settling-time is explicitly derived. Furthermore, to assure the Uniform Ultimate Boundedness (UUB) of all signals in the feedback system, the dynamics of the observer and controller are jointly analyzed. Simulations and experiments are conducted to quantify the control performance. The proposed approach achieves superior performance compared with recent literature on fixed-time/finite-time control and a commercially available PID controller. The comparative results witness that the developed control scheme improves the convergence-time, accuracy, and robustness while overcoming the singularity issue and mitigating the chattering effect of conventional SMC.  相似文献   

11.
In this paper, a protocol is proposed for fixed-time consensus of the high-order chained-form multi-agent systems subject to non-holonomic constraints. By employing the backstepping structure and a power integrator, the distributed fixed-time protocol is designed to guarantee that system states reach consensus before a fixed time. The fixed settling time can be calculated explicitly, and it is independent of initial conditions. The proposed protocol is applied to multi-agent wheeled mobile robots to support the theoretical result.  相似文献   

12.
This study concentrates on the tracking control of teleoperation system subjected to robot uncertainties. The coupling of kinematic and dynamic uncertainties poses a challenge to construct the teleoperation controller. To overcome this difficulty, an observer-based approach is designed to ensure position tracking while compensating for the unfavorable effects arising from the uncertainties. First, two sliding-mode observers together with a novel power reaching law are constructed, upon which, the uncertainties will be estimated in finite time. Next, a controller is proposed to solve the finite-time convergence of the tracking errors. The settling time and the stability of the closed-loop system are derived by Lyapunov’s direct method. Simulation results are presented to testify the tracking performance of the suggested control.  相似文献   

13.
《Journal of The Franklin Institute》2022,359(18):10483-10509
In this paper, a fast fixed-time vertical plane motion controller is proposed for autonomous underwater gliders (AUGs) gliding in shallow water. The influence of speed-sensorless conditions, model uncertainties, unknown time-varying external disturbances, input saturations, and state delay are taken into account. To improve control performance, a fast fixed-time stable system is first presented. Based on the system, an adaptive extended state observer (ESO) is developed for estimating speed, model uncertainties, and external disturbances. A fast fixed-time controller is designed for improving the gliding efficiency and reducing the risk of hitting the ocean floor. Moreover, an input saturation auxiliary system and an advance compensation method are presented to cope with input saturations and state delay. According to Lyapunov theory, it is proved that the AUG states can converge into a small neighborhood within a fixed time. Finally, simulation results demonstrate the rapidity and effectiveness of the designed control method.  相似文献   

14.
Finite-time and fixed-time synchronization (FAFS) of coupled memristive neural networks (CMNNs) with discontinuous feedback functions are explored in this paper. Firstly, a more comprehensive stability theory is systematically established. Secondly, by designing adaptive feedback controller and discontinuous feedback controller, both finite-time and fixed-time synchronization can be realized through regulating the main control parameter. Thirdly, 1-norm and quadratic-norm Lyapunov functions are considered simultaneously in this article, while in estimating the settling time, the former one is more accurate than the latter one under the same synchronization criteria. Finally, in numerical simulation, the analysis and comparison of the proposed controllers are given to show the effectiveness of the corresponding results.  相似文献   

15.
This study proposes two novel prescribed performance terminal sliding surfaces (PPTSSs) to address the fixed time stable bilateral teleoperation issue for a class of underwater manipulators with error constraints and input saturation. A general mathematical definition of the PPTSS method is first introduced, which can predetermine the convergence rate, steady-state error, and maximum overshoot. Moreover, the system settling time would have a fixed upper bound once the PPTSS is reached. An auxiliary system for saturation compensation is utilized to overcome the difficulties caused by actuator saturation. Moreover, two control schemes based on PPTSSs are proposed to handle error constraints and ensure the bound of global settling time is fixed. Finally, numerical simulation results are presented to demonstrate the effectiveness of the developed algorithms.  相似文献   

16.
In this paper, we study the fixed-time consensus problem for multi-agent systems with structurally balanced signed graph. A new class of fixed-time nonlinear consensus protocols is designed by employing the neighbor’s information. By using Lyapunov stability method, states of all agents can be guaranteed to reach agreement in a fixed time under our presented protocols, and the consensus values are the same in modulus but different in sign. Moreover, it is shown that the settling time is not dependent on the initial conditions, and it makes a good convenience to estimate the convergence time by just knowing the graph topology and the information flow of the multi-agent systems. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed consensus protocols.  相似文献   

17.
This paper deals with the synchronization control of a class of delayed neural networks using a fast fixed-time control theory. By employing Lyapunov stability theory, a novel sufficient criterion is derived such that two neural networks can be synchronized within a fixed-time. Compared with some existing results, the proposed controller can render two neural networks faster synchronized. A numerical example is given to demonstrate the effectiveness of the criterion.  相似文献   

18.
In this paper, a robust fault tolerant control, which provides a global fixed-time stability, is proposed for robot manipulators. This approach is constructed based on an integration between a fixed-time second-order sliding mode observer (FxTSOSMO) and a fixed-time sliding mode control (FxTSMC) design strategy. First, the FxTSOSMO is developed to estimate the lumped disturbance with a fixed-time convergence. Then, based on the obtained disturbance estimation, the FxTSMC is developed based on a fixed-time sliding surface and a fixed-time reaching strategy to form a global fixed-time convergence of the system. The proposed approach is then applied for fault tolerant control of a PUMA560 robot and compared with other state-of-the-art controllers. The simulation results verify the outstanding fault estimation and fault accommodation capability of the proposed fault diagnosis observer and fault tolerant strategy, respectively.  相似文献   

19.
This paper presents a fixed-time composite neural learning control scheme for nonlinear strict-feedback systems subject to unknown dynamics and state constraints. To address the problem of state constraints, a new unified universal barrier Lyapunov function is proposed to convert the constrained system into an unconstrained one. Taking the unconstrained system, a modified fixed-time convergence state predictor is explored, enabling the prediction error for compensating the neural adaptive law to be obtained and improving the learning ability of online neural networks (NNs). Without employing fractional power terms or a complicated switching strategy to build the control law, a new method of constructing a smooth fixed-time dynamic surface control scheme is proposed. This overcomes the potential singularity problem and the explosion of complexity often encountered in fixed-time back-stepping designs. The representative features of our design are threefold. First, it is free of the fractional power terms, yet offers fixed-time convergence. Second, it addresses the state constraint problem without requiring a feasibility check. Third, it constructs a new state-predictor and enhances the approximation accuracy of NNs. The stability of the proposed control scheme is analyzed using the Lyapunov technique. Simulation results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

20.
This paper is concerned with the finite-time and fixed-time synchronization of complex networks with discontinuous nodes dynamics. Firstly, under the framework of Filippov solution, a new theorem of finite-time and fixed-time stability is established for nonlinear systems with discontinuous right-hand sides by using mainly reduction to absurdity. Furthermore, for a class of discontinuous complex networks, a general control law is firstly designed. Under the unified control framework and the same conditions, the considered networks are ensured to achieve finite-time or fixed-time synchronization by only adjusting the value of a key control parameter. Based on the similar discussion, a unified control strategy is also provided to realize respectively asymptotical, exponential and finite-time synchronization of the addressed networks. Finally, the derived theoretical results are supported by an example with numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号