首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, a guidance scheme for impact angle control against maneuvering targets with unknown target acceleration is proposed. In this scheme, the unknown target acceleration is estimated via a linear extended state observer; a novel time-varying global slide mode control technique is presented to eliminate the reaching phase and enforce a desired impact angle exactly at the time of interception with finite-time convergence, good robustness, high precision and smooth guidance command. Moreover, feasible guidance logics are developed to achieve all-aspect interception with the tolerance of large initial heading errors. Numerical simulations in various scenarios are performed to verify the performance of the proposed guidance scheme.  相似文献   

2.
The three-dimensional (3D) impact time and angle guidance problem is of great practical significance but remains open because of the coupling nonlinearity and multiple constraints. To solve this problem, a 3D vector guidance law is proposed in this paper to intercept a non-maneuvering target at the desired impact conditions. First, a 3D vector impact angle constrained guidance law with explicit time-to-go estimation is developed by extending the planar one into the 3D space. Then, the intercepting component of the above guidance law is augmented by a time-to-go feedback term, which leads to the proposed 3D vector impact time and angle guidance law. Stability analysis and parameter selection criteria are presented to show the advantageous features of the proposed design. In particular, the proposed guidance law does not require the switch logic, numerical algorithms, or decoupling strategy, which outperforms similar existing results in terms of continuous command and convenient implementation. Finally, several numerical simulations are performed to validate the theoretical findings.  相似文献   

3.
An Impact Angle, Speed and Acceleration Control Guidance (IASAG) law against the stationary target is proposed, which is critical for the effectiveness of the air-to-surface guided weapons. It is hard to address multiple terminal constraints problem for unpowered missile, especially including terminal speed constraint, which is uncontrollable state. Based on Line-of-Sight (LOS) angle, a fourth-order polynomial function is designed to make the number of coefficients of the function equal to number of boundary conditions. Through analytic calculation and transformation, the relation between the specified boundary conditions and the coefficients are established. The coefficient equations are reduced to a univariate nonlinear equation whose solution is determined by terminal speed constraint. Based on the characteristic of the nonlinear equation, we propose a Particle Swarm Optimization(PSO) method to find the coefficient that satisfies terminal speed constraint. According to Lyapunov stability theory, an asymptotically stable trajectory tracking controller is designed to track the reference leading angle with respect to range-to-go to guarantee the impact angle, speed and acceleration constraints. The effectiveness of the proposed guidance law is verified through numerical simulations.  相似文献   

4.
In this paper, for three-dimensional interception of multiple missiles on a maneuvering target, a prescribed-time salvo attack guidance scheme with impact angle constraints and impact time constraint is investigated. The target accelerations are estimated accurately by a prescribed-time extended state observer. With the proposed guidance scheme, it ensures the LOS angles converge to desired values within a predetermined convergence time, and achieves salvo attack at a predetermined impact time. Prescribed-time convergency is shown for the proposed observer and controllers. Finally, the validity of the proposed guidance scheme is verified through numerical simulation.  相似文献   

5.
This paper proposes a finite-time command filtered backstepping guidance law (FCFBGL) with the terminal angle constraint while accounting for the input saturation and the autopilot dynamics. To eliminate the adverse effect induced by the filtering errors and the acceleration saturation, a new finite-time error compensation mechanism is integrated in the guidance law design. The proposed FCFBGL not only guarantees the the line-of-sight (LOS) angle error to converge to a small neighborhood of the origin in finite time but also achieves the continuity of the input signal. in finite time. Moreover, with the aid of the fractional power extended state observer (FPESO), the proposed FCFBGL requires no information on the target acceleration and the acceleration derivative of the missile, which is preferable in the practical application. The finite-time stability of the proposed guidance law is derived with the Lyapunov methodology. Simulation results illustrate the effectiveness and superiority of the proposed guidance law.  相似文献   

6.
To realize the terminal acceleration constraint for a bias proportional navigation guidance law without usage of switching logics, this paper proposes a modified bias term and presents a terminal acceleration constrained bias proportional navigation guidance law against maneuvering targets. First, a so-called virtual planar coordinates whose origin is attached to the point mass of the target is built, so that the original maneuvering target is transformed to a virtual stationary target. On this basis, the common structure of bias proportional navigation guidance law is presented. To realize the terminal acceleration constraint, a modified bias term related to the relative distance between target and missile is used to improve the bias proportional navigation guidance law. With the virtual look angle and the line-of-sight angle constrained, the proposed modified bias proportional navigation guidance law can intercept the maneuvering targets in a desired attack angle. Comparisons with the optimal guidance law in the linear system are carried out, and the proposed law is proved to be near-optimal. The numerical simulation results demonstrate the all-aspect interception capability of the proposed law against maneuvering targets.  相似文献   

7.
This paper investigates entry guidance of a capsule for pinpoint landing on Mars. In this scenario, the capsule is subject to the external disturbances caused by the atmosphere that can result in control saturation, and then undesired landing errors. To this end, a new guidance scheme to satisfy entry constraints, high-accuracy landing at high elevation sites, is proposed. The technical contributions of this work are two-fold: first, in order to mitigate the effects caused by large disturbance, a function describing the joint constraints of bank angle and slacked height is proposed; based on the nonlinear model predictive control (NMPC), a new algorithm is developed, where the constraints of dynamics, bank angle, slacked height, are sufficiently considered and precisely modeled; second, a state-space observer to improve the prediction of disturbance is introduced, which can significantly improve the accuracy of landing performance. The numerical simulations show the feasibility and validity of the proposed scheme.  相似文献   

8.
Strap-down seeker is rigidly fixed onto the missile body, which results in detection information being coupled to the missile’s attitude and having a narrow field-of-view (FOV). During the terminal guidance flight, attitude adjustment of the missile may lose the target’s lock and reduce interception accuracy. Therefore, this paper investigates three-dimensional integrated guidance and control (IGC) under the constraints of the FOV and roll angle for skid-to-turn (STT) missile with strap-down seeker. A new low-order IGC model is constructed by establishing a second-order model of body line-of-sight (BLOS) angle based on strap-down decoupling theory and combining it with the second-order roll angle equation. Furthermore, a low-order fixed-time IGC scheme is developed using the integral barrier Lyapunov function (iBLF) to limit BLOS and roll angles. Fixed-time filter, which avoids the “complexity explosion” caused by conventional back-stepping technique, is utilized for obtaining virtual control command and its derivative. A fixed-time disturbance observer is introduced to compensate for the lumped disturbance. According to Lyapunov stability theory, it is proven that the proposed IGC scheme can make the closed-loop system converge within a fixed time. Finally, the effectiveness and robustness of the IGC scheme are verified by various numerical simulations.  相似文献   

9.
In this paper, a novel adaptive integrated guidance and control (IGC) scheme is proposed for skid-to-turn (STT) missile with partial state constraints and actuator faults. Considering the strict-feedback form of the IGC model, the dynamic surface control (DSC) approach is adopted to design the IGC scheme. To prevent the attack angle, sideslip angle and velocity deflection angle from violating the constraints, the barrier Lyapunov function (BLF) and modified saturation function are employed in the IGC design procedure. Moreover, an auxiliary system is constructed to remove the adverse effects that caused by the modified saturation function. The adaptive laws are constructed to estimate the actuation effectiveness of actuators and the upper bounds of lumped uncertainties in the IGC model. It is theoretically shown that all signals in the closed-loop system are bounded while the state constraints are not violated in presence of actuator faults and uncertainties. Numerical simulation results are presented to verify the effectiveness and robustness of the proposed IGC scheme.  相似文献   

10.
This paper proposes an optimal three-dimensional (3-D) spatial-temporal cooperative guidance (STCG) law for intercepting a maneuvering target with impact angle and time constraints. The guidance problem is studied to achieve spatial cooperation for multi-directional attack in the normal channel and temporal cooperation for simultaneous interception in the tangential channel, respectively. Firstly, the 3-D optimal impact-angle-control guidance (OIACG) is introduced to formulate spatial interception geometry. Based on this law, the relative trajectory length is analytically derived and an accurate time-to-go predictor is formulated against maneuvering targets. In the tangential channel, an optimal temporal cooperative guidance is proposed by leveraging high-dimensional Schwarz inequality method. The proposed algorithm is believed to outperform the existing nonlinear cooperative guidance laws due to its optimality with specific performance index for minimizing the control expenditure. The convergence properties of the proposed STCG law are provided to facilitate its practical implementation. Comparison simulations and application under the realistic pursuer model and target estimation are performed to demonstrate the effectiveness and robustness of the proposed cooperative method.  相似文献   

11.
In this paper, we first develop an adaptive shifted Legendre–Gauss (ShLG) pseudospectral method for solving constrained linear time-delay optimal control problems. The delays in the problems are on the state and/or on the control input. By dividing the domain of the problem into a uniform mesh based on the delay terms, the constrained linear time-delay optimal control problem is reduced to a quadratic programming problem. Next, we extend the application of the adaptive ShLG pseudospectral method to nonlinear problems through quasilinearization. Using this scheme, the constrained nonlinear time-delay optimal control problem is replaced with a sequence of constrained linear-quadratic sub-problems whose solutions converge to the solution of the original nonlinear problem. The method is called the iterative-adaptive ShLG pseudospectral method. One of the most important advantages of the proposed method lies in the case with which nonsmooth optimal controls can be computed when inequality constraints and terminal constraints on the state vector are imposed. Moreover, a comparison is made with optimal solutions obtained analytically and/or other numerical methods in the literature to demonstrate the applicability and accuracy of the proposed methods.  相似文献   

12.
In order to improve the flexibility and reduce the energy consumption of cooperative guidance laws considering the impact angle constraint, this paper proposes a three-dimensional event-triggered fixed-time cooperative guidance law with the constraint of relative impact angles. First, for the purpose of avoiding the precision degradation due to the estimation error of time-to-go especially facing a maneuvering target, the range-to-go and velocity along the line-of-sight (LOS) are taken as the coordination variables for achieving time-cooperative guidance. Secondly, instead of assigning specific desired impact angles for each missile, only the consensus errors of relative impact angles are utilized as the coordination variables for achieving space-cooperative guidance, which can avoid continually maneuvering for maintaining the constant desired impact angles, thus reducing the fuel consumption. Next, the guidance laws along the LOS and perpendicular to the LOS are developed, and the event-triggering mechanisms are designed to reduce the update frequency of cooperative guidance commands, thus further reducing the energy consumption. To guarantee the convergence rate, the fixed-time control theory is adopted and the stability of proposed event-triggered cooperative guidance laws are rigorously proved. In addition, it is also proved that there is no Zeno behavior when implementing the proposed event-triggered cooperative guidance laws. Finally, numerical simulations indicate that the strictly simultaneous attack is achieved and the constraint of relative impact angles is satisfied. Comparative studies demonstrate that the computation burden of cooperative guidance commands is relaxed and the fuel consumption is reduced by the proposed event-triggered cooperative guidance laws with the constraint of relative impact angles.  相似文献   

13.
In this paper, an impact angle control guidance (IACG) law with predefined convergence time and seeker’s field-of-view (FOV) limit is proposed in three-dimensional (3D) scenario. First, a predefined-time error dynamic is developed whose significance is revealed by comparison with conventional methods. Second, based on coupled engagement dynamics, a 3D predefined-time IACG law is derived by applying the proposed error dynamic. To tackle the FOV limit, two auxiliary functions are introduced into the IACG law. The robustness against disturbances and uncertainties is further improved by utilizing the terminal sliding mode technique. With the proposed guidance law, the impact-angle error can converge to zero exactly at a tunable predefined time. Finally, the effectiveness and performance of the proposed IACG law are shown by several simulations with comparative study.  相似文献   

14.
15.
In this paper, a composite Chebyshev finite difference method for solving linear quadratic optimal control problems with inequality constraints on state and control variables is introduced. This method is an extension of Chebyshev finite difference scheme and is based on a hybrid of block-pulse functions and Chebyshev polynomials using the well known Chebyshev–Gauss–Lobatto nodes. The excellent properties of hybrid functions are used to convert optimal control problem into a mathematical programming problem whose solution is much more easier than the original one. Various types of optimal control problems are investigated to demonstrate the effectiveness of the proposed approximation scheme. The method is simple, easy to implement and provides very accurate results.  相似文献   

16.
This paper considers the simultaneous attack of a stationary target by multiple missiles. A novel fixed-time distributed guidance law based on the proportional navigation (PN) guidance law is designed by integrating a consistent control technique into the guidance strategy. This guarantees that the time-to-go of the missile becomes consistent. The guidance law adopts a discrete design, and a compensation item driven by normal acceleration is added to tangential acceleration. This eliminates the potential singularity problem when the heading angle is zero before the consistency is obtained, and thus the multiple missile system still converges in fixed time. In addition, the proposed guidance law can be applied to both undirected and directed graphs. Furthermore, two improved guidance laws are proposed to improve the robustness of the system against adverse effects caused by input delays and topology switching failures and to provide a theoretical proof. Finally, a simulation is used to verify the performance of the distributed guidance law and its robustness against the above failures.  相似文献   

17.
This paper investigates the robust attitude tracking control problem for a rigid-flexible coupling spacecraft. First, the dynamic model for a rigid-flexible coupling spacecraft is established based on the first-order approximation method to fully reveal the coupling effect between rigid movement and flexible displacement when the spacecraft is in rapid maneuver. In the condition that flexible vibration measurements are not available, an robust output feedback controller which is independent of model is presented using Lyapunov method with considering state-independent disturbances. To resolve the chattering problem caused by the discontinuous sign function, a modified continuous output feedback controller is proposed by introducing functions with continuous property. Rigorous proof is achieved showing that the proposed control law ensures asymptotic stability and guarantees the attitude of a rigid-flexible spacecraft to track a time-varying reference attitude based on angle and angular velocity measurements only. Finally, simulations are carried out to verify the simplicity and effectiveness of the proposed control scheme.  相似文献   

18.
一种新的椭球算法   总被引:2,自引:0,他引:2  
基于更动约束的思想[1 ] 与方法 ,提出了求解线性规划问题的新椭球算法 .它与L .G .Khachian的椭球算法[2 ] 不同 ,在新算法的椭球迭代过程中 ,不仅用约束不等式割掉不含约束集的半个椭球 (椭球中心不在约束集内时 ) ,称之为约束割 ;而且在椭球中心落在约束集内时 ,它用目标不等式割掉含约束集的半个椭球 ,称之为目标割 .新算法的不等式系统是由原规划 (或对偶规划 )的约束不等式与目标不等式组成的 (规模小 ) ,而不是由原椭球算法的K K T条件[5] 组成的不等式系统 (规模大 ) .这种新椭球算法即有多项式计算复杂性的特性 ,又在迭代过程中得到一系列单调趋向最优解的可行解 (在解存在时 ) .如果认为已得满意解 ,可随时停机 .对于实际问题 ,大多数是变量有界的 ,初始椭球不大 ,因此新算法更为实际 ,有效 .  相似文献   

19.
In this work, considering the roll dynamics and actuator dynamics, an observer-based control scheme for a vehicle is proposed. The proposal considers a nonlinear higher order sliding mode observer to estimate unmeasurable lateral velocity, roll angle and roll velocity. Using the observer information, a controller based on block control with sliding mode technique is designed for the reference trajectory tracking of the lateral and yaw velocities of the vehicle. The stability of the complete closed-loop system including zero dynamics is analyzed. The effectiveness of the proposed scheme is demonstrated through CarSim simulations.  相似文献   

20.
This article studies the neuroadaptive full-state constraints control problem for a class of electromagnetic active suspension systems (EASSs). First, the original constraint system with arbitrary initial values is transformed into a new constraint system with zero initial values by using the shift function method. Then, a new kind of cotangent-type nonlinear state-dependent transition function is constructed to solve the asymmetric time-varying full-state constraints control problem, which eliminates the limitation that the virtual controller needs to satisfy the feasibility conditions in the previous full-state constraints control based on Barrier Lyapunov Function (BLF) and Integral BLF. Furthermore, the neural networks (NNs) are used as nonlinear function approximators to deal with the unknown nonlinear dynamics of EASSs, a neuroadaptive full-state constraints control design method is proposed under the Backstepping recursive design framework. Finally, the effectiveness of the proposed method is verified by a simulation of EASSs with road disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号