首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A spacecraft formation flying controller is designed using a sliding mode control scheme with the adaptive gain and neural networks. Six-degree-of-freedom spacecraft nonlinear dynamic model is considered, and a leader–follower approach is adopted for efficient spacecraft formation flying. Uncertainties and external disturbances have effects on controlling the relative position and attitude of the spacecrafts in the formation. The main benefit of the sliding mode control is the robust stability of the closed-loop system. To improve the performance of the sliding mode control, an adaptive controller based on neural networks is used to compensate for the effects of the modeling error, external disturbance, and nonlinearities. The stability analysis of the closed-loop system is performed using the Lyapunov stability theorem. A spacecraft model with 12 thrusts as actuators is considered for controlling the relative position and attitude of the follower spacecraft. Numerical simulation results are presented to show the effectiveness of the proposed controller.  相似文献   

2.
The generalized dynamic equations of motion have been obtained by the direct stiffness method for multimass flexible rotor bearing systems including the effects of gyroscopic moments, disc skew, and rotor acceleration. A set of undamped critical speed mode shapes calculated from the average horizontal and vertical bearing stiffness is used to transform the equations of motion into a set of coupled modal equations of motion. The modal equations are coupled by the generalized bearing coefficients and the gyroscopic moments. An analysis using only undamped critical speeds or decoupled modal analysis assuming proportional damping may lead to erroneous results. This paper presents a rapid method of calculating rotor resonance speeds with their corresponding amplification factors, stability and unbalance response of turborotors. Examples of the application of this modal approach are presented and results are compared to those of other methods such as matrix transfer analysis.  相似文献   

3.
This work studies the advantageous features of the fluid inerter device for optimised structural control of buildings. Experimental data are first presented to characterise the fluid inerter dynamics, and validate the simplified analytical formulations. Building on these observations, the device is modelled as an inerter in parallel with a nonlinear dashpot representing a power law damping term. The latter dissipative effects are mainly induced by the pressure drops occurring in helical channels due to the fluid viscosity and density. Then, novel passive vibration control schemes are implemented for the earthquake protection of base-isolated buildings by combining the fluid inerter with a tuned mass damper system. To account for the uncertain nature of the earthquake input, the base acceleration is modelled as a Kanai–Tajimi filtered stationary random process. The optimal fluid inerter parameters, namely inertance and damping, are identified numerically by minimising stochastic performance indices relevant to displacement, acceleration, and energy-based measures of the structural response. The nonlinear damping behaviour of the fluid inerter is fully incorporated in the optimal design procedure via the statistical linearisation technique. Nonlinear response history analysis under an ensemble of 44 natural earthquake ground motions is carried out to assess the seismic performance of the system. Since inertance and damping are coupled characteristics in a real fluid inerter, design guidelines are finally outlined to determine the actual geometrical and mechanical properties of the device to achieve targeted parameters resulting from the optimisation procedure.  相似文献   

4.
The attitude tracking control problem for a rigid spacecraft using two optimal sliding mode control laws is addressed. Integral sliding mode (ISM) control is applied to combine the first-order sliding mode with optimal control and is applied to quaternion-based spacecraft attitude tracking maneuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the control Lyapunov function (CLF) approach is used to solve the infinite-time nonlinear optimal control problem, whereas the Lyapunov optimizing control (LOC) method is applied to solve the finite-time nonlinear optimal control problem. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude tracking maneuvres is presented and simulation results are included to demonstrate and verify the usefulness of the proposed controllers.  相似文献   

5.
In this article, the fault-tolerant control is investigated for the spacecraft attitude control system described by a linearized model with Markovian switching. First, the evolution of sudden failures of the spacecraft’s actuators is described by a Markov process. Then, the mathematical model of the spacecraft attitude control system with the Markov jump characteristic fault is established. Taking the uncertainty of the system model and external interference into consideration, a fault-tolerant control scheme is proposed for the established spacecraft attitude control system with the Markov jump characteristic fault by using the sliding mode control technique. Compared with some existing sliding mode controller design methods, the proposed method requires a less total number of LMIs to be solved. The stability and reachability of the resulting closed-loop system under the presented sliding mode control scheme are proven by applying the Lyapunov stability theory. Finally, some simulation results are provided to show the effectiveness and advantages of the proposed control method for spacecraft attitude control.  相似文献   

6.
In this paper, we announce our recent results on the asymptotic and spectral analysis of the model of an aircraft wing in a subsonic air flow. This model has been developed in the Flight Systems Research Center of UCLA and is presented in the works by Balakrishnan. The model is governed by a system of two coupled integro-differential equations and a two-parameter family of boundary conditions modeling the action of the self-straining actuators. The differential parts of the above equations form a coupled linear hyperbolic system; the integral parts are of the convolution type. We provide the spectral asymptotics for the eigenfrequencies of the system (or aeroelastic modes) and the asymptotical approximations for the corresponding eigenfunctions (or the mode shapes). Based on the asymptotical results, we (a) state that the set of the mode shapes is complete in the energy space; (b) construct a system which is biorthogonal to the set of the mode shapes in the case when there might be multiple aeroelastic modes; and (c) show that the mode shapes form a Riesz basis in the energy space.  相似文献   

7.
In the electric driving system, the measurement of the motor speed error becomes more and more important, which has an impact on the system vibration suppression. In this paper, based on the single-neuron adaptive PID control method, the dual-inertia system considering gear friction torque is modeled and studied. Firstly, the dual-inertia system with gear friction is established, and dynamic differential equations of it are derived; Then, the comprehensive meshing stiffness and the time-varying friction torque of the gear system are deduced; Next, the Ziegler-Nichlos frequency domain response method is adopted to obtain the parameters of the PID controller. The control methods including the PID, Fuzzy-PID with DOB and single-neuron adaptive PID are utilized to adjust the motor speed of the system; Finally, the effects of gear friction, the moment of inertia of load and control methods on motor speed and system error are analyzed.  相似文献   

8.
车辆对不平整路面的随机动压力分析   总被引:1,自引:0,他引:1  
采用双自由度四分之一车辆模型,以路面不平整和车辆发动机振动为激励,运用随机过程理论分析了车辆对不平整路面的随机动压力,得到了车辆动压系数的概率分布以及最大动压系数与路面不平整度、车速、悬挂质量以及悬挂系统与非悬挂系统特性之间的关系。算例分析表明,引起车辆振动的路面不平整波形的频率范围主要集中在0.04~2.0之间,最大动压系数随路面不平整度、车速、悬挂与非悬挂系统刚度的增大而增大,随着悬挂质量以及悬挂系统阻尼的增大而减少,而轮胎阻尼对车辆动荷载的影响并不显著。  相似文献   

9.
The attitude tracking control problem of a spacecraft nonlinear model with external disturbances and inertia uncertainties is addressed in this paper. First, a new sliding mode controller is designed to ensure the asymptotic convergence of the attitude and angular velocity tracking errors against external disturbances and inertia uncertainties by using a modified differentiator to estimate the total disturbances. Second, an adaptive algorithm is applied to compensating the disturbances, by which another sliding mode controller is successfully designed to achieve a high performance on the attitude tracking in the presence of the inertia uncertainties, external disturbances and actuator saturations. Finally, simulation results are presented to illustrate effectiveness of the control strategies.  相似文献   

10.
This paper addresses the agile attitude maneuver of flexible spacecraft using control moment gyros without modal information. Here, piezoelectric actuators are employed to actively suppress the vibration of flexible appendages. Both the dynamics and the proposed controller are globally developed on the Special Orthogonal Group SO(3), avoiding ambiguities and singularities associated with other attitude representations. More specifically, an observer is first designed to estimate the modal information of vibration. A robust control law is developed by synthesizing a proportional-derivative (PD) controller, an adaptive sliding mode controller, and an active vibration-suppression controller, which use the information of the estimated structural modes. The stability of the closed-loop system is proved using Lyapunov stability theory. Finally, numerical examples are performed to show the effectiveness of the proposed method.  相似文献   

11.
Attitude takeover control of failed spacecraft, which is a key technology in on-orbit service, has received extensive attention in recent years. In the attitude takeover control mission, inertial parameters of the failed spacecraft are unknown or inaccurate. In the meantime, actuator consumption must be considered owing to the limited fuel or energy of the service spacecraft. Using a failed spacecraft takeover control mission executed by multiple nanosatellites as an example, an optimal attitude takeover control method is proposed in this paper to optimize actuator consumption while addressing model uncertainties. Firstly, an auxiliary nonlinear system is constructed and then a radial basis function neural network is employed to estimate the unknown nonlinear dynamics model. Secondly, an optimal control law is designed by combining the inverse optimal principle, adaptive technique, and backstepping theory. Finally, the Harris Hawks optimization (HHO) is adopted for the control allocation problem of multiple nanosatellites. Simulation results demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

12.
The energy regulation of fully actuated torque–driven robot manipulators in joint space is addressed in this paper. The proposed controller is designed via an energy shaping plus damping injection approach. The contribution is the proposal of an energy regulator with partial damping injection capable of inducing oscillations in the undamped joints of robot manipulators, with an user specified desired frequency and amplitude, by adding only damping in the rest of the joints, which may require less control effort than a trajectory tracking controller with full damping injection. Although viscous friction is considered in all joints of robot manipulator, it has been compensated via the proposed energy regulator. Moreover, the controlled periodic motion oscillates around a desired joint position as reference, and this provides a nice feature in the robot, mainly when there is not interest in the undamped joint to follow an specified time-varying sinusoidal function, but generating an oscillatory motion of constant amplitude and frequency. Instrumental in stability analysis is the Lyapunov’s theory and LaSalle’s theorem, which allows concluding that the closed-loop trajectories approach an invariant set that could include a unique equilibrium or periodic orbits. Numerical simulations on a manipulator arm model of two degrees of freedom illustrate the main results.  相似文献   

13.
This paper investigates the robust attitude tracking control problem for a rigid-flexible coupling spacecraft. First, the dynamic model for a rigid-flexible coupling spacecraft is established based on the first-order approximation method to fully reveal the coupling effect between rigid movement and flexible displacement when the spacecraft is in rapid maneuver. In the condition that flexible vibration measurements are not available, an robust output feedback controller which is independent of model is presented using Lyapunov method with considering state-independent disturbances. To resolve the chattering problem caused by the discontinuous sign function, a modified continuous output feedback controller is proposed by introducing functions with continuous property. Rigorous proof is achieved showing that the proposed control law ensures asymptotic stability and guarantees the attitude of a rigid-flexible spacecraft to track a time-varying reference attitude based on angle and angular velocity measurements only. Finally, simulations are carried out to verify the simplicity and effectiveness of the proposed control scheme.  相似文献   

14.
This study deals with the stability analysis of a flexible structure with one and only one boundary control. The system is composed of three parts: a cart (motorized platform), a flexible cable, and a load mass attached to the lower part of the cable. This situation leads to a hybrid system as a mathematical model for the cable dynamics: one partial differential equation coupled to two ordinary differential equations. Despite the presence of a time-delay in the top-end of the cable, we are able to prove that the hybrid system is well-posed in the sense of semigroups theory and more importantly, only one boundary control can guarantee the exponentially decay of the energy of the system under reasonable conditions on the parameters of the system. This outcome considerably improves the result recently established in [17], where two more controls are required: one interior (Kelvin–Voigt) damping which acts over the entire cable and another boundary control which is exerted on the lower-end of the cable. Furthermore, we provide an estimate of the exponential decay of the system by means an appropriate Lyapunov functional. Lastly, numerical examples are presented in order to ascertain and highlight our theoretical outcomes.  相似文献   

15.
The response and stability of a single degree-of-freedom (SDOF) viscoelastic system with strongly nonlinear stiffness under the excitations of wideband noise are studied in this paper. Firstly, terms associated with the viscoelasticity are approximately equivalent to damping and stiffness forces; the viscoelastic system is approximately transformed to SDOF system without viscoelasticity. Then, with application of the method of stochastic averaging, the averaged Itô differential equation is obtained. The stationary response and the largest Lyapunov exponent can be analytically expressed. The effects of different system parameters on the response and stability of the system are discussed as well.  相似文献   

16.
In this paper, the problem of active fault tolerant control for a reusable launch vehicle (RLV) with actuator fault using both adaptive and sliding mode techniques is investigated. Firstly, the kinematic equations and dynamic equations of RLV are given, which represent the characteristics of RLV in reentry flight phase. For the dynamic model of RLV in faulty case, a fault detection scheme is proposed by designing a nonlinear fault detection observer. Then, an active fault tolerant tracking strategy for RLV attitude control systems is presented by making use of both adaptive control and sliding mode control techniques, which can guarantee the asymptotic output tracking of the closed-loop attitude control systems in spite of actuator fault. Finally, simulation results are given to demonstrate the effectiveness of the developed fault tolerant control scheme.  相似文献   

17.
This paper is concerned with robust stability analysis of second-order linear time-varying (SLTV) systems with time-varying uncertainties (perturbations). With the specific Lyapunov functions, a simple and neat algebraic criterion for testing uniformly asymptotic stability of SLTV systems are derived. Without transformation to a system of first-order equations, the new conditions are imposed directly on the time-varying coefficient matrices of the system. The main feature of the proposed algebraic criterion is that the uncertain coefficient matrices are time-varying and not necessarily symmetric. Finally, the proposed stability conditions are used to design the extending space structures system of the spacecraft. Simulation results are provided to illustrate the convenience and effectiveness of the proposed method.  相似文献   

18.
This paper investigates a quaternion-based finite-time cooperative attitude synchronization and tracking of multiple rigid spacecraft with a virtual leader subject to bounded external disturbances. Firstly, the communication network between followers is assumed to be an undirected graph and every follower can get a direct access to the virtual leader, by using two neighborhood attitude error signals, a novel chattering-free recursive full-order sliding mode control algorithm is proposed such that all follower spacecraft synchronize to the virtual leader in finite time. In the proposed algorithm, the sliding mode surface is constructed by two layers of sliding mode surfaces, which are called as the outer and the inner sliding mode surfaces. To achieve finite-time performance of sliding mode dynamics, the outer sliding mode surface is designed as a terminal sliding mode manifold, and the inner one is designed as a fast nonsingular terminal sliding mode manifold, respectively. Then, to reduce the heavy communication burden, a distributed recursive full-order sliding mode control law is designed by introducing a distributed finite-time sliding mode estimator such that only a subset of the group members has access to the virtual leader. Finally, a numerical example is illustrated to demonstrate the validity of the proposed results.  相似文献   

19.
Unified modeling and analysis of a proportional valve   总被引:4,自引:0,他引:4  
Developments in nonlinear control theory have made it possible to design controllers for systems having non-smooth nonlinearities in their dynamics. Hydraulic systems that use inexpensive proportional valves are examples of such systems, where nonlinearities arise due to valve geometry and spool imperfections. Without a proper valve model, however, nonlinear analysis and control of these hydraulic systems is not possible.We have developed nonlinear equations for a generic proportional valve model and have used them to obtain simplified flow rate expressions under generally accepted assumptions. These equations relate a set of geometric spool properties and physical model parameters to the flow rate through the valve ports. The development focuses on obtaining a single set of flow rate equations applicable to critical center, overlapped, and underlapped proportional valves. These unified model equations are useful for simulation and nonlinear controller design. We have also demonstrated that the errors incurred when using the unified valve model are dependent on the damping coefficient alone and are less than 10% in the frequency range within which most valves are used.  相似文献   

20.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号