首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the passivity analysis of fractional-order Takagi-Sugeno (T-S) fuzzy systems subject to external disturbances and nonlinear perturbations under an adaptive integral sliding mode control (AISMC) methodology. To better accommodate the features of the T-S fuzzy dynamical model, a novel fractional-order memory-based integral-type sliding manifold function is defined, which is different from the existing sliding manifold function. With the help of Caputo fractional-order derivative properties and quadratic Lyapunov functional, some linear matrix inequality (LMI)-based sufficient criteria are derived to ensure the asymptotic stability conditions of resulting sliding mode dynamics with passive performance index. Besides that, an adaptive sliding mode control law is designed for the addressed systems to guarantee the system state variables onto the predefined integral sliding manifold. Finally, the effectiveness of the proposed controller is validated based on derived sufficient conditions with two practical models, such as fractional-order interconnected power systems and fractional-order permanent-magnet synchronous generator (PMSG) model, respectively.  相似文献   

2.
In this paper, the problem of delay-dependent stability analysis of fractional-order systems with time-varying delay is investigated. First, a class of novel fractional-order integral inequalities for quadratic functions by constructing appropriate auxiliary functions is proposed, which has been proven to be useful in analyzing fractional-order systems with time-varying delay. Based on these proposed inequalities, the Lyapunov–Krasovskii functions are designed to deal with the time-varying delay terms, reducing the conservatism of the stability criteria. Furthermore, delay-dependent criteria are derived to achieve asymptotic stability of fractional-order systems with time-varying delay. Finally, two examples are provided to illustrate the effectiveness and feasibility of the proposed stability criteria.  相似文献   

3.
This paper considers the robust stability problem of fractional-order systems with uncertain order and structured perturbations. A stability check procedure is proposed for determining the robust bounds of uncertain order and other uncertain parameters for fractional-order systems.The results are obtained in terms of Cylindrical Algebraic Decomposition which is first used for analyzing the robust stability problem of fractional-order systems with uncertain order. The method is non-conservative for fractional-order systems with the uncertain order α satisfying 0?<?α?<?2. Examples are given to demonstrate the effectiveness of proposed approach.  相似文献   

4.
Based on the idea of tracking control and stability theory of fractional-order systems, a novel synchronization approach for fractional order chaotic systems is proposed. We prove that the synchronization between drive system and response system with different fractional order q can be achieved, and the synchronization between different fractional-order chaotic systems with different fractional order q can be achieved. Two examples are used to illustrate the effectiveness of the proposed synchronization method. Numerical simulations coincide with the theoretical analysis.  相似文献   

5.
The primary goal of this paper is to examine the finite-time stability and finite-time contractive stability of the linear systems in fractional domain with time-varying delays. We develop some sufficient criteria for finite-time contractive stability and finite-time stability utilizing fractional-order Lyapunov-Razumikhin technique. To validate the proposed conditions, two different types of dynamical systems are taken into account, one is general time-delay fractional-order system and another one is fractional-order linear time-varying time-delay system, furthermore the efficacy of the stability conditions is demonstrated numerically.  相似文献   

6.
A full order fractional-order observer is designed for a class of Lipschitz continuous-time nonlinear fractional-order systems with unknown input. Sufficient conditions of existence for the designed observer and stability of state estimation error system are developed by reconstructing state and using general quadratic Lyapunov function. By applying fractional-order extension of Lyapunov direct method, the stability of the fractional-order state estimation error system is analyzed. Due to the conditions involving a nonlinear matrix inequality, a new sufficient condition with linear matrix inequality (LMI) is reformulated, which makes the full order fractional-order observer implemented easily by using Matlab LMI toolbox. Examples are taken to show the effectiveness of the proposed approach by numerical simulations.  相似文献   

7.
In this work, a model-free adaptive sliding mode control (ASMC) methodology is proposed for synchronization of chaotic fractional-order systems (FOSs) with input saturation. Based on the frequency distributed model and the non-integer version of the Lyapunov stability theorem, a model-free ASMC method is designed to overcome the chaotic behavior of the FOSs. The control inputs are free from the nonlinear-linear dynamical terms of the system because of utilizing the boundedness feature of the states of chaotic FOSs. Moreover, a new medical image encryption scheme is tentatively proposed according to our synchronization method, and its effectiveness is verified by numerical simulations. Furthermore, the performance and security analyses are given to confirm the superiority of the proposed encryption scheme, including statistical analysis, key space analysis, differential attack analysis, and time performance analysis.  相似文献   

8.
This paper proposes a novel data-driven control for stabilization of a class of uncertain discrete-time nonlinear systems. The proposed method is based on the compact form dynamic linearization technique, which relates the first variation of the output signal with the fractional-order variation of the input one. Then, a discrete-time controller is proposed, based on the obtained fractional-order data-driven equivalent model. In order to compute the proposed controller and estimator, only input-output data information is considered. The uniform ultimately boundedness of the tracking errors are demonstrated by a formal analysis. Finally, comparison results based on simulations are presented to highlight the effectiveness of the proposed methodology.  相似文献   

9.
This paper investigates the problems of stability and decentralized control for a class of interconnected fractional-order systems. Firstly, model of the interconnected fractional-order system is established. In the meantime, a decentralized periodic intermittent control technique based on partial variables of the system is developed, and the time cost in the control process and the control cost can be saved by this technique. Secondly, stability criteria by using stability theory of fractional-order systems are derived, respectively. Related results can also be used for estimating regions of stability and applied to practical systems such as the power system, the wireless power transfer(WPT) system and the brushless DC motors (BLDCM) system. Besides, in order to reduce the conservatism of the results, the relevant inequality technique is introduced during the derivation process. At last, illustrative examples are given to demonstrate effectiveness of the obtained results. Compared with existing literatures, simulation results indicate that the conservatism of the results is decreased obviously, and the proposed control scheme can indeed save the time cost and the control cost.  相似文献   

10.
《Journal of The Franklin Institute》2022,359(17):10038-10057
The robust stability of a family of interval fractional-order systems with complex coefficients is investigated in this study. The concept of “a family of interval fractional-order systems with complex coefficients” means that the characteristic function of a control system can be of both commensurate and non-commensurate orders, the coefficients of the characteristic function can be uncertain parameters, and may be complex numbers. At first, a simple graphical procedure is presented for robust stability analysis. The “robust stability testing function” is then extended to look at the robust conditions. To the best of the authors’ knowledge, no auxiliary function for analyzing the robust stability of the systems under investigation has been introduced until now. Moreover, lower and upper frequency bounds are provided which are useful to improve the computational efficiency of testing the robust stability conditions. Eventually, to verify the results, analytical examples and numerical simulations are provided.  相似文献   

11.
This paper concentrates on the distributed consensus control of heterogeneous fractional-order multi-agent systems (FO-MAS) with interval uncertainties. Unlike previous methods, no restrictive assumptions are considered on the fractional-orders of the agents and they can have non-identical fractional-orders. Therefore, the closed-loop system becomes an incommensurate fractional-order system and its stability analysis is not easy. It makes consensus control more challenging. To design a systematic controller, new Lyapunov-based Linear Matrix Inequality (LMI) conditions are proposed which are suitable to determine the state feedback controller gains. Then, the consensus of heterogeneous fractional-order agents with an observer-based controller is provided. Finally, some numerical examples are provided to verify the effectiveness of our results.  相似文献   

12.
Fractional-order calculus has been studied deeply because many networked systems can only be described with fractional-order dynamics in complex environments. When different agents of networked systems show diverse individual features, fractional-order dynamics with heterogeneous characters will be used to illustrate the multi-agent systems (MAS). Based on the distinguishing behaviors of agents, a compounded fractional-order multi-agent systems(FOMAS) is presented with diverse dynamical equations. Suppose multiple leader agents existing in FOMAS, containment consensus control of FOMAS with directed weighted topologies is studied. By applying frequency domain analysis theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment controls of heterogenous FOMAS with communication delays. The consensus results of delayed fractional-order dynamics in this paper can be expanded to the integer-order models. Finally, the results are verified by simulation examples.  相似文献   

13.
This paper studies the global asymptotic stability of a class of interval fractional-order (FO) nonlinear systems with time-delay. First, a new lemma for the Caputo fractional derivative is presented. It extends the FO Lyapunov direct method allowing the stability analysis and synthesis of FO nonlinear systems with time-delay. Second, by employing FO Razumikhin theorem, a new delay-independent stability criterion, in the form of linear matrix inequality is established for ensuring that a system is globally asymptotically stable. It is shown that the new criterion is simple, easy to use and valid for the FO or integer-order interval neural networks with time-delay. Finally, the feasibility and effectiveness of the proposed scheme are tested with a numerical example.  相似文献   

14.
This paper investigates the tracking consensus problem for the second-order leader systems by designing fractional-order observer, where a periodic sampled-based data event-triggered control is employed. In order to track the position information of leader, observers for followers are designed by fractional-order system, where only the relative position information is available. Furthermore, in the process of observers design, a sampled-based event-triggered strategy is proposed so that observers use the event-triggered sampled-data, to reduce the overall load of the network. In our proposed event-triggered strategy, the event detection only works at every sampling time instant which determines whether the sampled-data should be discarded or used. Under this control strategy, the Zeno-behavior is absolutely excluded since the minimum of inter-event times is inherently lower bounded by one sampling period. It is found that the followers can track state of the leader if fractional-order observers are appropriately designed and relevant parameters are properly selected. By using the generalized Nyquist stability criterion, a necessary and sufficient condition for the observer tracking consensus of the second-order leader systems is derived. The results show that the real and imaginary parts of the eigenvalues of the augmented Laplacian matrix, and fractional-order α of observer play a vital role in reaching consensus.  相似文献   

15.
This paper investigates the consensus of fractional-order multiagent systems via sampled-data event-triggered control. Firstly, an event-triggered algorithm is defined using sampled states. Thus, Zeno behaviors can be naturally avoided. Then, a distributed control protocol is proposed to ensure the consensus of fractional-order multiagent systems, where each agent updates its current state based on its neighbors’ states at event-triggered instants. Furthermore, the pinning control technology is taken into account to ensure all agents in multiagent systems reach the specified reference state. With the aid of linear matrix inequalities (LMI), some sufficient conditions are obtained to guarantee the consensus of fractional-order multiagent system. Finally, numerical simulations are presented to demonstrate the theoretical analysis.  相似文献   

16.
In this paper, we consider an initial value problem for linear matrix coefficient systems of the fractional-order neutral differential equations with two incommensurate constant delays in Caputo’s sense. Firstly, we introduce the exact analytical representation of solutions to linear homogeneous and non-homogeneous neutral fractional-order differential-difference equations system by means of newly defined delayed Mittag–Leffler type matrix functions. Secondly, a criterion on the positivity of a class of fractional-order linear homogeneous time-delay systems has been proposed. Furthermore, we prove the global existence and uniqueness of solutions to non-linear fractional neutral delay differential equations system using the contraction mapping principle in a weighted space of continuous functions with regard to classical Mittag–Leffler functions. In addition, Ulam–Hyers stability results of solutions are attained based on fixed-point approach. Finally, we present an example to demonstrate the applicability of our theoretical results.  相似文献   

17.
This paper precedes chaos control of fractional-order chaotic systems in presence of uncertainty and external disturbances. Based on some basic properties on fractional calculus and the stability theorems, we present a hybrid adaptive intelligent backstepping-sliding mode controller (FAIBSMC) for the finite-time control of such systems. The FAIBSMC is proposed based on the concept of active control technique. The asymptotic stability of the controller is shown based on Lyapunov theorem and the finite time reaching to the sliding surfaces is also proved. Illustrative and comparative examples and simulation results are given to confirm the effectiveness of the proposed procedure, which consent well with the analytical results.  相似文献   

18.
In this paper, a novel fractional-order partial pole assignment (FPPA) control algorithm is proposed for systems with time-delay. The FPPA control algorithm is essentially an extension of the original pole assignment, which could change undesired pole locations into desired pole locations. The presented control scheme can be used on open loop poorly damped or unstable systems, which is superior to most other time-delay compensation schemes. The discussion on choosing desirable pole locations is presented based on stability and resonance conditions in the frequency domain. The controlled system is also studied in the time domain based on different transient performance indicators, namely overshoot, settling time, and rising time. In addition, the parameters of the proposed FPPA control algorithm are tunable, thus the control scheme can be used to satisfy different control requirements. Simulation results of stable and unstable fractional-order plants with time-delay are shown to verify the effectiveness and practicability of the FPPA control algorithm.  相似文献   

19.
This work realizes lag quasi-synchronization of incommensurate fractional-order memristor-based neural networks (FMNNs) with nonidentical characteristics via quantized control. The motivations behind this research work are threefold: (1) quantized controllers, which generate discrete control signals, can be more easily realized in computers than non-quantized controllers, and can consume smaller communication capacity; (2) incommensurate orders in a single FMNN and nonidentical characteristics in drive-response FMNNs are inescapable due to the differences among the circuit elements used to implement FMNNs; (3) convergence analysis of delayed incommensurate fractional-order nonlinear systems, which is the basis for the derivation of synchronization criterion, has not been handled perfectly. As an effective tool for convergence analysis of delayed incommensurate fractional-order nonlinear systems, especially for estimation of ultimate state bound, a vector fractional Halanay inequality is established at first. Then, a quantized synchronization controller, in which the dead-zone is introduced into some logarithmic quantizers to avoid chattering phenomenon, is designed. By means of vector Lyapunov function together with the newly derived vector fractional Halanay inequality, the synchronization criterion is proved theoretically. Lastly, numerical simulations supplementarily illustrate the correctness of the synchronization criterion. In contrast with the hypotheses in the relevant literature, the hypotheses in this paper are weaker.  相似文献   

20.
In this paper, we investigate the asymptotic stability of fractional-order fuzzy neural networks with fixed-time impulse and time delay. According to the fractional Barbalat’s lemma, Riemann–Liouville operator and Lyapunov stability theorem, some sufficient conditions are obtained to ensure the asymptotic stability of the fractional-order fuzzy neural networks. Two numerical examples are also given to illustrate the feasibility and effectiveness of the obtained results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号