首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A composite anti-disturbance control problem for a class of nonlinear systems is studied in this paper. There are two types of disturbances in the systems, one is the matched disturbance with bounded variation rate, the other is the unmatched time-varying disturbances. A nonlinear disturbance observer is designed to estimate the matched disturbances, which can be presented separately from the controller design. By integrating DOBC with back-stepping method, a composite DOBC and back-stepping controller is proposed, and the disturbance estimations are introduced into the design of virtual control laws to compensate the unmatched disturbances. In addition, it is proved that all the states in the closed-loop system are uniformly ultimate bounded (UUB). Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

2.
This paper proposes two kinds of distributed disturbance observer (DO) based consensus control laws for linear multi-agent systems (MAS) with mismatched disturbances. For a linear MAS with mismatched disturbances generated by exosystems, we design relative information based distributed DOs for each agent to obtain information of disturbances. The first method is to utilise the information of disturbances obtained by the distributed DO as a feedforward term to reject influence of exogenous disturbances for consensus results, where the gain matrix of the feedforward term is obtained via solving a matrix equation. The second method is to design an internal model based dynamic compensator to reject influence of exogenous disturbances, where the dynamic compensator is also updated by the distributed DO. The leaderless and leader-follower consensus are both considered in this paper, and rigorous proof of consensus results is also given. Finally, some numerical simulations verify effectiveness of the proposed consensus control laws.  相似文献   

3.
In this work, finite time position and heading control based on backstepping based fast terminal sliding mode control is proposed for coaxial octorotor subjected to external wind disturbances. First, mathematical model of the coaxial octorotor is developed and then a new learning-based technique, an extended inverse multi-quadratic radial basis function network (EIMRBFN) is proposed to estimate the unmodeled dynamics of the octorotor. The external disturbance observer is also designed to encompass the realistic disturbance effect in the dynamical model and to allow the controller handle external disturbances, effectively. Backstepping controller based on fast terminal sliding model control is then proposed and also applied on the resultant dynamical model that provides finite time convergence of system's states. The stability of the proposed controller and complete system is analyzed using Lyapunov stability theory. Finite time convergence analysis of the desired trajectory is also provided. Simulations are carried out to validate the effectiveness of the proposed control scheme. Comparison with traditional PID and LQR controllers also verifies that the proposed controller achieves improved performance.  相似文献   

4.
A disturbance rejection approach based on disturbance observer is proposed for a class of nonlinear systems subject to mismatched disturbances. The mismatched disturbances are described by exogenous systems and satisfy partially-known information, which enter the system in the different channels with the control input. The disturbance observer is designed to estimate the mismatched disturbances, which can be introduced separately from the controller design. By integrating disturbance observer with back-stepping method, the disturbance observer plus back-stepping (DOPBS) controller can be constructed to reject the mismatched disturbances. And the asymptotically stability for the closed-loop system can be achieved. Finally, simulation examples are given to demonstrate the feasibility and effectiveness of the proposed scheme compared with existing methods.  相似文献   

5.
In this paper, a composite fault tolerant control (CFTC) with disturbance observer scheme is considered for a class of stochastic systems with faults and multiple disturbances. The disturbances are divided into two parts. One represents the stochastic disturbance with partial known information which is formulated by an exogenous system. The other is independent Wiener process. A stochastic disturbance observer is designed to estimate exogenous disturbance. To make the first type of disturbance can be rejected and the fault can be diagnosed, a composite fault diagnosis observer with disturbance observer is constructed. Furthermore, a composite fault-tolerant controller is proposed to compensate disturbances and faults. Finally, simulation examples are given to demonstrate the feasibility and effectiveness of the proposed scheme.  相似文献   

6.
A novel control scheme combining disturbance observer technique and back-stepping method is proposed for a class of nonlinear system with multiple mismatched disturbances. The uncertain multiple mismatched disturbances contain not only single harmonic or constant disturbances but also another unexpected nonlinear signal presented as a nonlinear function. The composite adaptive disturbance observers are designed to estimate the disturbances with partial known information. By integrating disturbance observer based control with back-stepping method, a composite controller is designed. Here, the disturbance estimations are introduced into the design of virtual control laws in each step to compensate the mismatched disturbances. Rigorous stability analysis for the closed-loop system is established by direct Lyapunov function method. It is shown that the system output asymptotically converges to zero in spite of existing multiple mismatched disturbances. Finally, a simulation example is applied to demonstrate the effectiveness of the proposed method.  相似文献   

7.
In this paper, the appointed-time prescribed performance and finite-time tracking control problem is investigated for quadrotor unmanned aerial vehicle (QUAV) in the presence of time-varying load, unknown external disturbances and unknown system parameters. For the position loop, a novel appointed-time prescribed performance control (ATPPC) strategy is proposed based on adaptive dynamic surface control (DSC) frameworks and a new prescribed performance function to achieve the appointed-time convergence and prescribed transient and steady-state performance. For the attitude loop, a new finite-time control strategy is proposed based on a new designed sliding mode control technique to track the desired attitude in finite time. Some assumptions of knowing system parameters are canceled. Finally, the stability of the closed-loop system is proved via Lyapunov Theory. Simulations are performed to show the effectiveness and superiority of the proposed control scheme.  相似文献   

8.
Distributed coordination of multi-agent systems (MASs) has been investigated for many years, and fractional-order calculus has been proved that it can model the dynamics more accurately in certain circumstances. Hence, in this paper, combining the above two aspects, the distributed coordination of fractional-order MASs (FOMASs) is researched, which is a promising topic. Besides, in this paper, the uncertainty, inherent nonlinearity and external disturbances are taken into consideration, aiming at achieving the robust consensus tracking. In particular, the uncertain parameters will be identified from an optimization perspective using artificial bee colony algorithm (ABC). Firstly, to ameliorate the performance of the standard ABC, a hybrid ABC (hABC) incorporating two groups of searching mechanisms is designed, it facilitates the identification of unknown parameters. After obtaining the identified parameters, an efficient distributed nonlinear controller is raised to fulfill the robust consensus tracking. Finally, experiments prove that the designed parameters identification approach can successfully estimate the uncertain parameters with high accuracy, besides the designed control algorithm can robustly control the FOMASs.  相似文献   

9.
In this paper, a compound control strategy is proposed to realize the trajectory tracking task of quadrotors under operating constraints and disturbances. Disturbances caused by model uncertainties, environmental noises, and measurement disturbances are divided into matched disturbances and unmatched ones, which are compensated and suppressed separately by using two control components. The integral sliding mode control component is designed to actively reject the matched disturbances, and the control system is then transformed into an equivalent control system subject to equivalent disturbances only related to the unmatched disturbances. The remaining equivalent disturbances are treated by a robust model predictive control component based on the idea of constraints tightening, which minimizes the tracking error in an optimization framework and takes both state and input constraints into account explicitly. The derived compound control strategy is based on these two control components. Conditions are provided to guarantee the robust constraint satisfaction, recursive feasibility and closed-loop stability of the tracking error system. An illustrative example on the quadrotors shows the efficiency and robustness of this compound tracking control algorithm.  相似文献   

10.
This paper investigates spacecraft output feedback attitude control problem based on extended state observer (ESO) and adaptive dynamic programming (ADP) approach. For the plant described by the unit quaternion, an ESO is first presented in view of the property of the attitude motion, and the norm constraint on the unit quaternion can be satisfied theoretically. The practical convergence proof of the developed ESO is illustrated by change of coordinates. Then, the controller is designed with an involvement of two parts: the basic part and the supplementary part. For the basic part, a proportional-derivative control law is designed. For the supplementary part, an ADP method called action-dependent heuristic dynamic programming (ADHDP) is adopted, which provides a supplementary control action according to the differences between the actual and the desired system signals. Simulation studies validate the effectiveness of the proposed scheme.  相似文献   

11.
In this paper, we study the cooperative consensus control problem of mixed-order (also called hybrid-order) multi-agent mechanical systems (MMSs) under the condition of unmeasurable state, unknown disturbance and constrained control input. Here, the controlled mixed-order MMSs are consisted of the mechanical agents having heterogeneous nonlinear dynamics and even non-identical orders, which means that the agents can be of different types and their states to be synchronized can be not exactly the same. In order to achieve the ultimate synchronization of all mixed-order followers, we present a novel distributed adaptive tracking control protocol based on the state and disturbance observations. Wherein, a distributed state observer is used to estimate the followers’ and their neighbors’ unmeasurable states. And, a novel estimated-state-based disturbance observer (DOB) is proposed to reduce the effect of unknown lumped disturbance for the mixed-order MMSs. The proposed control protocol and observers are fully distributed and can be calculated for each follower locally. Lyapunov theory is used for proving the stability of the proposed control algorithm and the convergence of the cooperative tracking errors. A practical cooperative longitudinal landing control example of unmanned aerial vehicles (UAVs) is given to illustrate the effectiveness of the presented control protocol.  相似文献   

12.
In this paper, the composite anti-disturbance resilient control is considered for nonlinear singular stochastic hybrid system with partly unknown Markovian jump parameters under multiple disturbances. Three kinds of disturbances are included in the studied system. One is generated by an external system and it enters the hybrid system from the channel of the control input. The other one is stochastic white noise. And the third one is the external unknown time-varying disturbance and it is supposed to be H2 norm bounded. By combining the disturbance-observer-based-control scheme, H control technique and resilient control method, a composite anti-disturbance resilient controller is constructed to attenuate and eliminate the affection of these disturbances, and ensures the whole closed-loop system regular, impulse free and stochastically stable with the corresponding control performance. Then, some sufficient conditions and the gains of the controller and observer are obtained by using Lyapunov function method and the linear matrix inequalities (LMIs) technique. Finally, two numerical examples are given to show the effectiveness of presented method.  相似文献   

13.
14.
This paper investigates entry guidance of a capsule for pinpoint landing on Mars. In this scenario, the capsule is subject to the external disturbances caused by the atmosphere that can result in control saturation, and then undesired landing errors. To this end, a new guidance scheme to satisfy entry constraints, high-accuracy landing at high elevation sites, is proposed. The technical contributions of this work are two-fold: first, in order to mitigate the effects caused by large disturbance, a function describing the joint constraints of bank angle and slacked height is proposed; based on the nonlinear model predictive control (NMPC), a new algorithm is developed, where the constraints of dynamics, bank angle, slacked height, are sufficiently considered and precisely modeled; second, a state-space observer to improve the prediction of disturbance is introduced, which can significantly improve the accuracy of landing performance. The numerical simulations show the feasibility and validity of the proposed scheme.  相似文献   

15.
This paper develops a novel U-model enhanced double sliding mode controller (UDSMC) for a quadrotor based on multiple-input and multiple-output extended-state-observer (MIMO-ESO). UDSMC is designed using Lyapunov synthesis and Hurwitz stability to not only cancel the complex dynamics and nonlinearity, but also stabilize the uncertainty and external disturbance of the underlying quadrotors. MIMO-ESO is designed to estimate the unmeasurable velocities which can reduce the impact of sensor measurement errors in practice. The difficulties associated with quadrotor velocity's measurement disturbances and uncertain aerodynamics are successfully addressed in this control design. Rigorous theoretical analysis has been carried out to determine whether the proposed control system can achieve stable trajectory tracking performance, and a comparative real-time experimental study has also been carried out to verify the better effectiveness of the proposed control system than the built-in PID control system.  相似文献   

16.
A novel offset-free trajectory tracking control strategy is proposed for a hypersonic vehicle under external disturbances and parameter uncertainties. In order to realize the real-time control for the hypersonic vehicle, the predictive control law is divided into the on-line design and off-line design. Unlike general nonlinear disturbance observer-based control which involves designing the disturbance compensation strategy, the influences of the disturbances on the velocity and altitude are attenuated by the direct feedback compensation (DFC). Particularly, the offset-free tracking feature is proved for the output reference signal. Simulations show that the real-time control can be realized for the hypersonic vehicle, the controls and angle of attack are all in their given constraint scopes, and the velocity and altitude can track the given references accurately even under mismatched disturbances.  相似文献   

17.
In this paper, a flatness-based adaptive sliding mode control strategy is presented to solve the trajectory tracking problem of a quadrotor. According to the differential flatness theory, the typical under-actuated quadrotor dynamics is transformed into a fully-actuated one. Based on this model, backstepping sliding mode controllers are designed to solve the trajectory tracking problem. To improve the robustness to disturbances, extended state observers are applied as a feedforward compensation of disturbances. Moreover, considering the high-order dynamics and possible instability caused by large observer gains, the adaptive method is applied to compensate for the estimation error. The effectiveness of the proposed control scheme is verified in simulations.  相似文献   

18.
The problem of adaptive global finite-time stabilization control for a class of nonlinear switched systems in the presence of external perturbations and arbitrary switchings has been addressed in this research study. The proposed scheme has been designed based on a finite-time estimation technique in which during the control procedure, unknown imposed perturbations are accurately estimated by means of the designed finite-time disturbance observer (FTDO). Due to the exact estimation of the external disturbances within a given finite time, the encountered complications and adversities from loss of information in the Lyapunov parameter estimation (LPE) methods have been solved which are caused by the persistent switchings in the system. Furthermore, a new solution for the problem of chattering phenomenon in nonlinear switched systems has been presented by utilizing the designed FTDO, which can counteract the malfunctioning responses of the system caused by external disturbances and unmodeled dynamics. In this paper, an acknowledged class of nonlinear switched systems has been taken into account which is in the general form of canonical structure. In addition, the established design strategy is formulated for the control of perturbed nonlinear switched systems with one and only input and assures that the system states through the finite-time convergence characteristic, reach the equilibrium point of origin. Finally, numerical simulations are carried out on a mass-spring-damper (MSD) dynamical system to indicate advantages and superior efficiency of the suggested method.  相似文献   

19.
This paper investigates the finite-time trajectory tracking problem of a stratospheric airship subject to full-state constraint, input saturation, and disturbance. First, a disturbance observer is designed such that the estimation of disturbances can be accomplished within fixed time. Second, a Lyapunov barrier function-based finite-time controller is constructed to address the time-varying constraints of tracking errors, while a smooth filter is used to restrict the virtual signals and to generate their derivatives. Furthermore, novel auxiliary systems are proposed to compensate the possible saturation effect and to maintain the finite-time property. Comparative simulations are carried out to evaluate the effectiveness of the proposed controller.  相似文献   

20.
The novel control algorithm for linear time invariant plants with input time-delays and presence of external disturbances is proposed. The algorithm based on the state and disturbance predictors ensures the tracking control with unknown reference model parameters. The accuracy in steady state depends on the highest derivative of disturbance and reference model signals, therefore, the magnitude of these signals can be sufficiently large. Further, the proposed algorithm are extended on the state and disturbance sub-predictors which implement multi-step prediction. Compared with the predictor based algorithm the sub-predictor based algorithm allows to control plants with a larger input time-delay and allows to predict the disturbance in less time. The sufficient conditions in terms of linear matrix inequalities (LMIs) provide the estimate of the maximum time-delay that preserves the closed-loop system stability. Numerical examples illustrate the efficiency of the designed method compared with some existing ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号