首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
数学问题解决离不开对已知条件、结论、结构、形式等变化,通过变化变出公式的模型,从而变化解题思路.基本不等式ab1/2≤(a+b)/2(a≥0,b≥0)是证明不等式、求函数最值的重要工具,是由等式向不等式转化的桥梁,在新教材中这一工具作用体现更明显,解题中保证"一正、二定、三相等",且灵活变化(添凑项)使用基本不等式是成功解(证)题的关键.  相似文献   

2.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

3.
<正>《数学通报》2014年9月号问题2201如下:问题2201[1]已知a、b、c∈R+,且满足a2/1+a2+b2/1+b2+c2/1+c2=1,求证:abc≤2/4.本文从变元的个数与指数出发,利用均值不等式给出上述条件不等式的一个推广.推广已知n∈N+,n≥2,k∈N+,ai∈n  相似文献   

4.
问题(2013年全国高中数学联赛B卷第10题)假设a,b,c>0,且abc=1,证明:a+b+c≤a2+b2+c2.这是一道优秀试题,现给出异于参考解答的几个证明.证法1由均值不等式得a2+1≥2a,b2+1≥2b,c2+1≥2c,a+b+c≥33(abc)1/2=3,相加得a2+b2+c2+3≥2(a+b+c)=a+b+c+(a+b+c)≥a+b+c+33(abc)1/2=a+b+c+3.  相似文献   

5.
巧用均值不等式证明一类分式不等式   总被引:1,自引:0,他引:1  
若x、y∈R+ ,则x +y≥ 2 xy  ( ) ,这是众所周知的均值不等式。本文利用不等式 ( )给出一类难度较大的分式不等式的简捷证明 ,相信能够引起众多中学生的浓厚兴趣。例 1 已知a>1 ,b>1 ,求证  a2b-1 +b2a -1 ≥ 8。(第 2 6届独联体数学奥林匹克试题 )证明 据不等式 ( )得a2a -1 =(a -1 ) +1a -1 +2≥ 4,同理有  b2b-1 ≥ 4,∴ a2b-1 +b2a-1 ≥ 2 a2b-1 · b2a-1 ≥ 2 4·4=8。例 2 设α、β、γ为锐角 ,且sin2 α +sin2 β +sin2 γ =1 ,则有 sin3αsinβ +sin3βsinγ+sin3γsinα≥ 1。( 1 994年《数学通报》第 1 0期问题栏 91 2…  相似文献   

6.
错在哪里     
王庆 《中学数学教学》2020,(1):F0003-F0003
题目已知实数a,b,c满足a+b+c=1,a 2+b 2+c 2=3,则c的取值范围是.解答∵a+b+c=1,∴a+b=1-c,又∵a 2+b 2+c 2=3,∴a 2+b 2=3-c 2.根据均值不等式a+b 2≤a 2+b 22得1-c 2≤3-c 22,且该均值不等式成立的条件:a、b∈R,等号成立条件:a=0,b≥0或a≥0,b=0或a=b>0.解不等式1-c 2≤3-c 22得:1-c≤0,3-c 2≥0,或1-c>0,3-c 2≥0,()2≤3-c 22,∴1≤c≤3或-1≤c<1,综上可得:-1≤c≤3.  相似文献   

7.
第26届独联体数学奥林匹克问题为: 设a>1,b>1,求证:a2/b-1+b2/a-1≥8① 本文从字母的个数和次数两个方面,给出①式的推广,并说明其在一些不等式问题中的应用.  相似文献   

8.
在不等式单元中,有这样一组重要不等式: a2+b2≥2ab(a、b∈R),a2+b2/2≥(a+b/2)2(a、b∈R),a2+b2+c2≥ab+bc+ac(a、b、c∈R)以及a+b/2≥√ab(a、b∈R+).在这组不等式中,后三个不等式均是由第一个不等式推导出来的,其结构特点:①不等式左右两端同次幂,②具有对称性,③等号成立时的瞬时相等性.若将这组不等式联用、迭用或逆用,通过分析条件、研究结构、合理变形等手段,就能收到培养学生能力,开发学生智力,激活学生思维的效果.特别是它在解决一类有关最值、取值范围以及解证不等式等问题中解题效果尤为突出,现举例说明.  相似文献   

9.
高中《数学》(试验修订本·必修)第二册(上)第11页习题6.2第1题是:求证:(a2+b)2≤a22+b2.将上述不等式变形可得a2+b2≥(a+2b)2.(*)不等式(*)可利用均值不等式直接证明,也可借助恒等式2(a2+b2)=(a+b)2+(a-b)2及(a-b)2≥0证明.不等式(*)有着广泛的使用价值,本文略举数例加以说明.一、证明不等式【例1】设c是直角三角形的斜边,a、b是两条直角边,求证:a+b≤2c.证明:由题设得a2+b2=c2,由不等式(*)得c2=a2+b2≥(a+2b)2,即(a+b)2≤2c2,亦即a+b≤2c.【例2】己知a、b∈R+,且a+b=1,求证:a+21+b+21≤2.证明:由不等式(*)及已知有2=(a+21)+(b+21)≥(a+21…  相似文献   

10.
文[1]给出如下不等式猜想:若a,b,C是正实数,且满足abc=1,则a~2/2+a+b~2/2+b+c~2/2+c≥1.很多数学杂志给出了这个不等式的证明,下面笔者再给出一个简单的证明,证法1:由二元均值不等式得a~2/2+a+2+a/9≥2/3a(?)a~2/2+a≥5a/9-2/9,同理得到b~2/2+b≥5b/9-2/9;c~2/2+c  相似文献   

11.
问题 1 《数学教学》2 0 0 3年第 2期“数学问题与解答”栏目中的第 5 80题为设a、b、c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b≥ 32 .①笔者试图探索这个新颖不等式的上界 ,得出问题 1 .1 设a ,b,c为△ABC的三边 ,求证 :a2a +b -c+b2b +c -a+c2c+a -b<73 .②综合不等式①、②得问题 1 .2 设a ,b,c为△ABC的三边 ,求证 :32 ≤ a2a +b -c+b2b +c -a+c2c+a -b<73 .③为了证明不等式③ ,笔者首先想到了它的类似 :问题 1 .3 设x ,y ,z为任意正实数 ,求证 :xy +z+yz +x+zx +y≥ 32 .④于是 ,联想到 :能否将不等式③转化为三…  相似文献   

12.
题目设a,b,c,d,e>0,证明:(bcde+acde+abde+abce+abcd)4≥125(a+b+c+d+e)(abcde)3.此题由湖南师范大学叶军老师提供.这个不等式证明很难,技巧性很强,不过有意思的是其一般形式的证明反而简单一些.本文将用数学归纳法将这个不等式推广到一般.  相似文献   

13.
<正>一、问题起源及分析在基本不等式部分,有一类题:已知a>0,b>0,a+b=1,求4/a+1/b的最小值.这类ab题无论是在新课学习,还是在高三复习课时都有很多同学不能正确解题.分析其原因有两个方面,一是用基本不等式求最值要满足3个条件"一正、二定、三相等",只有这3个条件都满足了才可以用基本不等式解题,而学生  相似文献   

14.
《数学教学通讯》2001年第10期刊发的一篇文章[1]中利用均值不等式巧妙地证明了一类条件不等式.本文借用这篇文章中的例子进一步探讨这类条件不等式的统一背景. 例 1 已知 a,b∈R~+,a+b=1,求证: (1)a2十b2≥1/2;(2)a3十b3≥1/4. 该例中的第(1)个不等式的背景是 2(a2十b2)≥(a十b)2,①不等式(1)只不过是当a+b=1时的特殊情形.显然不等式①对任意实数a和b都是成立的,因此对不等式(1)就没有必要限制a和b为正实数. 不等式①应该说是中学数学里常见的基本不等式之一,在此没有必要给出它的证明.不  相似文献   

15.
题设a,b,c∈R^+,求证a/b+c+b/c+a+c/a+b≥3/2.此题是著名的shapiro猜想,又是1963年第26届莫斯科数学竞赛试题中的一道脍炙人口的不等式证明题.  相似文献   

16.
《中等数学》2008年第7期"数学奥林匹克问题"高229题如下:问题已知a,b,c∈R+,abc=1,求证:1/a+b/1+c/1+3/a+b+c≥4.文[1]、文[2]分别通过构造函数和换元法等给出了证明,解题过程都比较复杂,多数学生理解起来有一定难度.笔者经过探究,利用基本不等式得到了一种简单证法.  相似文献   

17.
正题目已知a1、a2、b1、b2∈(0,+∞),求证:a13/b12+a23/b22≥(a1+a2)2/(b1+b2)2,这是我校高三数学讲义上的一道习题,其证明并不难(过程略),令人感兴趣的是,对进一步推广该不等式可以得出很多结论.  相似文献   

18.
2013年浙江省高中数学竞赛的附加题是一道不等式证明题.题目设a、b、c∈R+,ab+bc+ca≥3.证明:a5+b5+c5+a3(b2+c2)+b3(c2+a2)+c3(a2+b2)≥9这道不等式题,证明的人口宽,方法多.下面先给出命题组提供的参考答案.证明原命题等价于证明  相似文献   

19.
我们在解不等式问题时,常常用到下面两个基本不等式:(1)a,b∈R ,(a b)/2≥2~(1/(ab));(2)a,b,c∈R ,(a b c)/3≥3~(1/(abc)).根据字母个数,分别称为二元、三元基本不等式).在解题过程中,有时会因为对上述公式选用不当,导致放缩出界,这里并不能根据字母个数、或代数式的项数选择公式,如何解决这一问题?  相似文献   

20.
宋庆老师在文[1]末提出了四个不等式猜想,其中猜想1如下: 猜想 若a,b,c是正实数,且满足abc=1,则a2/a+2+b2/b+2+c2/c+2≥1. 文[2]运用均值不等式的变式x2/y≥2x -y(x>0,y>0,当且仅当x=y时等号成立)证明了这个不等式猜想及如下一般性推广: 推广:若a,b,c,λ,μ是正实数,且满足abc=1,则a2/λa+μ+b2/λb+μ+c2/λc+μ≥3/λ+μ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号