首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一般的空间解析几何教材都是通过引进平面的法式方程推出点M_0(x_0,y_0,z_0)到平面π=Ax+By+Cz+D=0的距离公式d=|Ax_0+By,+Cz_0+D|/(A~2+B~2+C~2)~(1/2)的,本文介绍其它几种推导方法。一、运用求极值的方法。  相似文献   

2.
文[1]中给出了直线和圆的位置关系及其应用,今再给出平面和球的位置关系及其应用,作为原文的补充。命题关于平面π:Ax+By+Cz+D=0与球O:(x-a)~2+(b-y)~2+(c-z)~2=R~2,O(a,b,c)到π的距离为:则  相似文献   

3.
陈题新解     
新教材第二册 (上 )解析几何部分增添了“简单的线性规划” ,教材首先介绍了二元一次不等式表示平面区域 ,即平面直角坐标系中不等式Ax+By +C>0表示直线Ax+By+C =0某一侧所有点组成的区域 ;不等式Ax+By+C≥ 0所表示的平面区域还应包括边界 .因此 ,位于直线Ax+By +C =0同侧的点坐标 (x ,y)使得Ax +By+C同号 ,异侧的点坐标 (x ,y)使得Ax+By+C异号 .利用这个知识点可以解决一类典型的解析几何题目 ,下面仅举几例略谈笔者的体会 .例 1 已知直线l经过点P(2 ,- 1)且与以A(-3,4 )、B(3,2 )为端点的线段相交 ,求直线l斜率的取值范围 .分析…  相似文献   

4.
设空间直线过定点(x。,y。,z o),其方向向量V={l,m、n}, fx=x 0+It -则{y:y。+mt (t为参数)称为直线的参数式方程。 Iz=z o+nt本文将探讨直线参数式方程的若干应用。 (一)求 交 点 fx=x o I-It把直线方程2y:y。+mt(t为参数)代入曲面方程f(x,y、z)=o,得f相似文献   

5.
我们知道,二元一次不等式Ax+By+C>0(<0)在平面直角坐标系中表示直线Ax+By+C=0在某一侧面所有点组成的平面区域.由于把直线Ax+By+C=0  相似文献   

6.
(四)讨论直线与平面,直线与直线的位置关系 1.直线与平面的位置关系 设直线L的参数方程是(t为参数)。平面π的方程是Ax+By+CZ+D=0。将参数式代入平面方程得:(Al+Bm+Cn)t+Ax_0+By_0+Cz_0+D=0(*)于是,有如下的结论: (1)当Al+Bm+Cn=0时,方程(*)给出一个完全确定的t值,因而直线与平面有唯一的公共点;  相似文献   

7.
1空间平面的方程 命题空间直角坐标系里,平面方程的一般形式是Ax By Cz D=0,其中A2 B2 C2≠0,且n=(A,B,C)是所表示平面的法向量.  相似文献   

8.
王峰晨 《数学教学通讯》2007,(3):63-64,F0003
知识:二元一次不等式Ax By C>0(<0)在平面直角坐标系中表示直线Ax By C=0在某一侧面所有点组成的平面区域.方法:由于在直线Ax By C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax By C所得实数的符号都相同,所以只需在此直线的某一侧取某一个特殊点(x0,y0),从Ax0 By0 C的正负即可判断Ax By C>0(<0)表示直线哪一侧的平面区域.我们可以用二元一次不等式表示平面区域的方法来分析圆,椭圆,抛物线,双曲线把平面分成的平面区域,得到如下结论.结论1:对于圆x2 y2=r2及平面内任一点P(x0,y0),把点P(x0,y0)代入x2 y2,当x02 y02=r2时,点P(x0,y0)…  相似文献   

9.
线性规划应用广泛,在近几年的高考试题中占有举足轻重的地位,应予以足够重视.线性规划问题主要考查以下几个问题. 一、可行域问题 线性规划问题中的可行域,实际上是二元一次不等式(组)表示的平面区域,是解决线性规划问题的基础.因为在直线Ax+ By+C=0同一侧的所有点(z,y)满足Ax+ By+C的符号相同,所以只需在此直线的某一侧任取一点(z0,y0),把它的坐标代入Ax+ By+C=0,由其值的符号即可判断二元一次不等式Ax+ By+C>0(或<0)表示直线的哪一侧.  相似文献   

10.
直线方程Ax+By+C=0一次项系数的几何意义:向量(A,B)是直线Ax+By+C=0的法线方向.设点p坐标为(x1,y1),直线l的方程是Ax+By+C=0,过点P作直线l的垂线,垂足为D,线段PD的长度是点P到直线l的距离。  相似文献   

11.
一、平面区域的性质在平面直角面坐标中,直线L:Ax+By+C=0(A>0)将平面分成两部分:则有"同正异负".设P1(x1,y1),P2(x2,y2)为平面内的任意两点。  相似文献   

12.
要求已知点M(a,b)关于直线Ax+By+C=0的对称点N(x_0,y_0)的坐标,可由直线Ax+By+C=0是连接两点M(a,b)与N(x_0,y_0)的线段MN的垂直平分线而推得。由线段MN的中点((a+x_0)/2,(b+y_0)/2)在直线Ax+By+C=0上,有  相似文献   

13.
已知点P的坐标为(x0,y0),直线l的方程是Ax+By+C=0,求点P到直线l的距离d.  相似文献   

14.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

15.
众所周知,平面上点P(x0,y0)到直线l:Ax+By+C=0距离公式为d=|Ax0+By0+C|/(A2+B2)~1/2.在平面解析几何中,这是一个十分重要的公式.但是许多同学反映高中教材上关于这个公式的推导相对比较繁琐.那么有没有比较巧妙的方式推导点到直线距离  相似文献   

16.
公式 如果已知点P的坐标为 (x0 ,y0 ) ,直线l的方程为Ax+By +C=0 ,则点P到直线l的距离为d=|Ax0 +By0 +C|A2 +B2 .1 一点质疑此公式是高中教科书 (试验修订本 ·必修 )《数学》第二册 (上 ) (以下简称新教材 )第 7.3节的内容 ,新教材给出了此点到直线距离公式的推导过程 ,并指出了用两点间距离公式推导的繁琐和运算过程的复杂 .其实 ,在教材中 ,编者一再提到的思路自然、运算复杂的推导方法其实是很简单、巧妙的 .具体推导如下 :推导 1 设A≠ 0 ,B≠ 0 ,过P作直线l的垂线 ,垂足为Q(x1,y1) ,则Ax1+By1+c=0 ,y1- y0x1-x0 =BA ,即A…  相似文献   

17.
<正> 二次曲线F(x,y)=0上所有点到直线Ax+By+C=0的距离的最小值称为二次曲线F(x,y)=0与直线Ax+By+C=0的距离。 求二次曲线F(x,y)=0与直线Ax+By+C=0间距离实质上是求点到直线的距离问题与极值问题的综合。  相似文献   

18.
在高等数学以及解析几何中,我们常常需要讨论一个平面方程的问题,了解一个方程的几何意义对于理解一个方程是十分有必要的.设一般的平面方程为Ax+By+Cz+D=0,对于常数A,B,C通常都已给出了解释,即{A,B,C}为平面的法向量,而对于方程中的常数项D,并没有给出它的几何解释,在本文中我们针对此问题进行了研究,并通过这个几何解释很容易得到了关于距离的公式.  相似文献   

19.
<正> 点到直线的距离公式是解析几何中常用的公式,它的每一种推导方法常可以引起学生对数学思想的深化和理解.现介绍一种用向量来推导的简便易行方法. 已知点P的坐标为(x0,y0),直线l的方程为Ax+By+C=0,  相似文献   

20.
在学习了点到直线距离公式后 ,总觉得课本上对这一公式的证明比较繁琐 .其实 ,这一公式还有多种证法 .设P(x0 ,y0) ,L :方程Ax +By+C =0(A ,B不同时为零 )当A =0或B =0时公式显然成立 ,因此 ,这里只证明A ≠ 0 ,B≠ 0时的情况 .已知 :P(x0 ,y0 ) ,L :Ax+By +C =0(A ≠ 0 ,B ≠ 0 ) ,求证 :P到L的距离d =|Ax0 +By0 +C|A2 +B2 .证法一 :过P点作L的垂线交L于Q(x1 ,y1 ) ,则kPQ =BA∴ x1 -x0y1 -y0=AB ①∵Ax1 +By1 +C =0 ,∴将其变形为A(x1 -x0 ) +B(y1 -y0 )=-(Ax0 +By0 +C) ②联立①②得 :x1 -x0 =-A(Ax0 +By0 +C)A2 +…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号