首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的:探讨原发性开角型青光眼(POAG)患者黄斑区视网膜内层结构和功能的关系。创新点:POAG的潜在原因是视网膜神经节细胞(RGC)的丢失。虽然在传统上我们可以通过测量视网膜后极部约30°的结构和功能来评估青光眼性视神经损害,但是50%的RGC存在于黄斑区4.5 mm范围内。本研究关注黄斑区约10°范围视网膜结构和功能的关系,有助于更早地监测到青光眼性视神经损害。方法:本研究纳入了78例POAG患者及58例健康对照者,其中POAG分为早期青光眼(EG)和中晚期青光眼(AG)。所有受试者均进行了以下检测:分离格栅视觉诱发电位(icVEP)、标准自动视野计(SAP)及光学相干断层扫描(OCT)。icVEP检测时给予8%、14%、22%及32%对比度刺激,采集相应的信躁比(SNR)。黄斑区视野敏感度(mMS)通过计算黄斑中心12点的敏感度平均值获得。OCT扫描包括视网膜神经节细胞层+内丛状层的平均厚度(GCL+IPLT)及视盘周围神经纤维层平均厚度(pRNFLT)。我们比较了各组间SNR、mMS、GCL+IPLT及pRNFLT值,并分析了结构性指标和功能性指标之间的相关性。结论:POAG组患者的SNR、mMS、GCL+IPLT及pRNFLT均较正常对照组显著下降(所有P值<0.001)。在早期青光眼中,SNR及mMS均与视网膜内层厚度呈中度相关;而在中晚期青光眼中,mMS与视网膜内层厚度呈高度相关。  相似文献   

2.
1.—Wouldyoulikeabitmorerice?—,Imquitefull.A.SorryB.NoC.No,thanksD.2.—Ienjoyedmyselfverymuchatyourparty.—.A.ImgladtohearthatB.NotgoodatallC.PleasedontsaysoD.Ofcourse,youdid3.—Whynotgoandasktheteacherforhelp?—.A.Yes,IagreeB.H  相似文献   

3.
4.
5.
岩土材料(如黏土、砂土、岩石和混凝土等)在颗粒尺度上均具有独特且明显的微观结构(如组构、粒径、颗粒形状、矿物组成、接触模式和内部孔隙等)。这些颗粒尺度的微观结构较难直接观察,但对岩土材料的宏观物理力学行为(如剪切强度、压缩性和渗透性等)有着显著的影响。近年来,各种新型岩土工程材料(如纤维增强土和生物加固土)表现出更加复杂的微观结构。岩土材料微观结构对材料工程性质的影响促使人们采用更加先进的理论、实验和数值方法对其进行探索,从而大大加深了人们对宏微观力学的认识与理解。为分享岩土材料微观结构和微观力学的最新研究进展,本专辑收集了在该研究领域具有代表性的研究成果,涵盖了颗粒-颗粒和颗粒-流体相互作用、X射线计算机断层扫描观测技术及其应用、颗粒破碎和颗粒形状的影响、岩石裂隙扩展等方面。希望本专辑能加强读者对各个研究领域的理解,并进一步推动多场多尺度问题的应用和发展。  相似文献   

6.
RNA解旋酶是参与RNA代谢的最大的蛋白质家族,通过翻译和前体RNA剪接等各种过程来稳定细胞内环境。这些蛋白质还与一些疾病有关,如癌症和病毒性疾病。自噬是一种自我消化和保护细胞的运输过程,通过降解多余的细胞器和细胞垃圾来稳定内部环境或维持细胞的基本生存,与人类疾病有关。与自噬相似,RNA解旋酶在维持细胞内稳态中发挥着重要的作用,与多种疾病相关。近年来的研究表明,RNA解旋酶与自噬密切相关,参与调节自噬或作为自噬与其他细胞活动之间的桥梁,广泛影响了一些病理生理过程。本文总结了最新的研究,以了解RNA解旋酶调节自噬的机制以及这些机制与疾病之间的联系。  相似文献   

7.
目的:显著的干燥收缩是地聚物材料工程应用的重要制约因素之一。本文通过试验与理论分析,探讨偏高岭土基地聚物显著干燥收缩的成因,理清地聚物干燥收缩与微观结构的内在关系,从而提出控制地聚物干燥收缩的基本方法,提高地聚物材料的耐久性。创新点:1.通过干燥收缩试验,揭示了地聚物失水-收缩的两阶段关系以及初始水固比对地聚物失水-收缩行为的影响规律;2.基于地聚物孔隙特征建立了地聚物失水-收缩的多尺度物理模型,并成功地模拟了失水-收缩试验结果,进一步揭示了孔隙结构在地聚物失水-收缩过程中的作用机制。方法:1.通过干燥收缩实验分析,得到地聚物在低湿度环境下的干燥失水与体积收缩规律(图5和6);2.通过微观表征分析,揭示地聚物多尺度孔隙结构特征,以及初始水固比对微结构的影响规律(图7~10);3.通过多尺度物理模型分析,建立基于微结构的地聚物干燥收缩数学关系,揭示孔隙结构控制干燥收缩行为的微观机制(图11和13,公式(12)、(19)、(23)和(24))。结论:1.偏高岭土基地聚物具有两阶段失水-收缩行为,初始水固比改变地聚物孔结构从而对失水-收缩行为产生影响;2.早期失水过程(阶段Ⅰ)中,地聚物微孔失水是干燥收缩的主要成因,这一阶段控制因素由毛细应力向表面能改变逐步转变,微孔孔隙率与特征尺寸控制这一过程的干燥收缩;3.后期失水过程(阶段Ⅱ)中,地聚物纳米孔失水与凝胶致密化是干燥收缩的主要成因,这一阶段地聚物体积剧烈收缩(最高达到阶段I的7~10倍),因此控制失水量不超过阶段Ⅰ和Ⅱ之间的临界值是避免地聚物严重干燥收缩的基本方法,且改变地聚物的初始水固比与微孔结构对临界失水量也会产生影响。  相似文献   

8.
球壳结构风压相关性研究(英文)   总被引:1,自引:0,他引:1  
引入相关函数以描述不同矢跨比的球壳上2点间的风压相关性.根据风洞试验的风压测量数据,研究了2点间距离不同、2点连线与风向间角度不同时相干函数的大小.结果表明球壳结构上毗邻的2点在低频段具有强相关性,而非相邻点的风压相关性不明显.风压相关性随2点距离的减小而增大.距离相同时,风压相关性在顺风向最强,在横风向最弱.根据风洞试验数据,提出了球壳结构风压相关性指数模型,并给出了确定该模型的详细过程.结果表明该指数相关函数模型能恰当地描述距离较近2点间的相关性,且能较好地反映风向角变化的影响.此外,根据准定常理论对风压、风速间的相关性进行了研究,结果表明准定常理论对球壳结构风压、风速间的相关性不适用.  相似文献   

9.
生成语法框架内,形态规则能够通过吸收或压制等句法手段,改变原生谓词的题元结构,使该谓词的题元结构和论旨角色结构呈现非对称现象。文章旨在从投射原则PP、扩展的投射原则EPP、半题元假说、题元角色传递和核查理论角度出发,对这种非对称现象做出简要解释。  相似文献   

10.
肿瘤相关的三级淋巴结构(TLS),主要由B细胞和T细胞群体有机聚集形成于肿瘤组织范围内的异位淋巴组织。在肿瘤中,TLS的存在与免疫治疗的反应性和肿瘤预后密切相关。因其具有广阔的临床应用前景,研究者一直在积极探索。许多研究都试图破译TLS的形成机制、结构组成、诱导生成、预测标记物和临床利用。与此同时,用科学的方法定性和定量描述TLS,对其研究至关重要。在检测方面,苏木精-伊红染色法(H&E)染色、多重免疫组化、多重免疫荧光和12趋化因子基因特征是被认可的方法。然而在TLS的定量分析方面,例如TLS的绝对计数、组成TLS的细胞分析、TLS的结构特征、空间位置、密度、成熟度等,目前尚无标准方法。本研究回顾了TLS检测和定量分析的最新研究进展,提出了TLS评估的新方向,并解决了TLS在临床上的定量应用问题。  相似文献   

11.
目的:探究甘草酸能否激活体外鸡巨噬细胞并增强其免疫和吞噬杀菌功能。创新点:甘草酸通过核因子κB(NF-κB)和c-Jun氨基端激酶(JNK)信号通路提高一氧化氮(NO)和过氧化氢(H2O2)产生量,增强了其吞噬和杀菌的功能。方法:以不同浓度的甘草酸(0、12.5、25、50、100、200、400和800μg/ml)处理鸡巨噬细胞系HD11,采用荧光定量聚合酶链式反应(qP CR)和一氧化氮及过氧化氢测定试剂盒评价甘草酸对鸡巨噬细胞活化和免疫的影响,采用流式细胞技术和涂板计数法测定鸡巨噬细胞吞噬和杀菌能力。结论:甘草酸通过NF-κB和JNK信号通路激活鸡巨噬细胞,提高免疫细胞因子等基因的表达水平和NO及H_2O_2的产生量,从而增强了鸡巨噬细胞吞噬和清除胞内沙门氏菌的能力。  相似文献   

12.
目的:探索转位角对串联泵出口流量脉动的影响,揭示转位角对流量脉动的影响机理,获得最佳转位角以减小流量脉动,以及探索转位角对工况的敏感性。方法:1.建立基于单柱塞腔模型的单柱塞泵模型,求解其出口流量脉动特性;2.研究不同转位角下串联泵的出口流量脉动,优选转位角;3.对比不同转位角下出口流量脉动对工况的敏感性。结论:1.对于单个转子使用九柱塞的串联式轴向柱塞泵,最佳转位角是20°,因该角度可消除流量脉动在奇数阶次下的幅值;2.在大范围工况下,转位角为20°时可减小约50%的流量脉动。  相似文献   

13.
为了提高磁干扰环境下的航向角计算精度,将磁力计和惯性测量单元进行融合计算.在构建磁力计误差模型和分析磁力计三轴输出与相邻两时刻磁场分布特征关系的基础上,推导出航向角观测值.同时,采用陀螺状态和角速度增量作为惯性测量单元计算依据,计算出航向角的预测值.随着航向角和环境干扰的变化,使用随机森林算法持续迭代计算权重,将基于磁力计的航向角观测值和基于惯性测量单元的航向角预测值进行融合计算.结果表明,在磁干扰环境下,相比于普通的传感器融合方法,基于随机森林的传感器融合方法的航向角精度可提高约60%.通过随机森林算法计算合适的磁力计和惯性测量单元的输出权重,可有效提高磁干扰环境下的航向角计算精度.  相似文献   

14.
目的:介电高弹体是典型电敏性材料,在外加电场的作用下会产生大的变形,这一特点使其成为人工肌肉致动的理想材料,近年来引起研究者的广泛关注。本文着重介绍介电高弹体的基本力学理论和方法,旨在为相关材料、结构和器件的设计提供参考,也有助于不同专业背景的研究者了解并开展介电高弹体的相关研究。概要:本文介绍了近年来关于介电高弹体力电耦合问题的一些理论和数值研究,重点包括力电耦合的控制方程、材料本构关系、粘弹性响应、力电失稳以及致动器设计等方面。文中讨论了基于非平衡热动力学的介电高弹体力学模型处理复杂构型或与时间相关变形时常被采用的数值方法,优化介电高弹体致动极限的力学设计,以及介电高弹体力电响应在典型致动器中的应用。  相似文献   

15.
调查了电动车和自行车之间的超车事件,并探索已有非机动车设施内超车事件数和交通参数之间的关系.应用摄像机观测了3个南京机非隔离的非机动车道路段,并详细分析了包括流量、速度和超越事件特征在内的实际数据.通过数据分析和拟合发现:超车事件与速度差别以及自行车比例相关性较弱;高斯函数可以较好地描述超车事件数和流量(密度)之间的关系;非机动车道的利用水平影响到超车事件密度曲线的拐点位置.研究结论可应用于混合非机动车流中超车事件数的计算和机非隔离非机动车道的宽度设置.  相似文献   

16.
SAT问题(可满足性问题)是计算机科学的核心问题,研究SAT问题的方法很多,利用极小不可满足公式的性质来研究SAT问题是近几年兴起的一个热点研究方向.文章主要利用(1,*)-消解和分裂方法研究了差为2的唯一极小不可满足公式集(Unique-MU(2))和差为2的对称极小不可满足公式集(SYM-MU(2))的结构和复杂度.  相似文献   

17.
目的:探讨阿尔茨海默病(AD)和遗忘型轻度认知功能障碍(aMCI)在默认脑网络(DMN)、突显网络(SN)和执行控制网络(ECN)这三个脑网络中的半球间脑功能连接的差异性。创新点:利用体素镜像同伦功能连接(VMHC)来观察AD和aMCI在多个脑网络基础上的半球间功能连接特点。方法:该研究纳入了浙江省人民医院就诊的30例AD患者、14例aMCI患者和18例老年健康对照者,均给予静息态功能磁共振扫描,利用VMHC进行数据分析,联合简易智力状态检查量表(MMSE)和蒙特利尔认知评估量表(MOCA)进行相关分析。结论:(1)位于三个脑网络的异常半球功能连接主要存在于AD组,可以作为AD诊断的一个敏感性指标;(2)VMHC值可以作为预测AD进展包括aMCI发展为AD的一个敏感性指标。  相似文献   

18.
目的:研究和探讨反复瞬时高眼压对视网膜的损伤作用及其潜在的分子机制。创新点:模拟临床上青光眼患者夜间难以检测到的眼压峰值波动对视网膜的影响,首次证明反复的瞬时高眼压对视网膜具有直接损伤效应,其损伤机制与内质网应激通路激活有关。方法:通过眼前房生理盐水灌注,建立小鼠反复瞬时高眼压模型(50 mm Hg,1 min×7次),连续灌注处理1、3和7天后,采用视网膜铺片(Whole-mount retina)评估视网膜神经节细胞(RGC)损伤情况;用TUNEL法检测视网膜全层细胞凋亡;用转录组测序(RNA-seq)筛选参与视网膜损伤的分子通路;用实时荧光定量聚合酶链式反应(q RT-PCR)和蛋白免疫印迹(Western blot)进一步检测内质网应激通路相关分子的表达。结论:反复瞬时高眼压可以损伤视网膜全层,并呈时间依赖性的由外核层细胞(ONL)死亡进展至视网膜神经节细胞层(GCL)死亡。内质网应激相关信号通路中肌醇酶1(IRE1)信号通路激活参与了视网膜的损伤过程。  相似文献   

19.
目的:寻找以轴力为主要传递荷载方式的单层网壳结构的多种合理形态,改善结构的受力性能,为建筑设计提供多种合理的结构形状方案。创新点:1.建立控制单元组长度的移形方程,并在移形方程的基础上推导基于联动机构势能最小化的结构形态创构方法。2.将分组方式应用于网壳结构形态创构,并通过改变分组形式获得不同的合理结构形状;临时单元与临时力的引入拓展了方法的适用范围,也为形态创构提供了新的途径。方法:1.将机构的单元进行分组,以单元组总长度不变作为条件建立机构移形方程;根据机构势能下降最快的方向调整机构形状,使机构逐步达到势能最低。2.在同一初始模型中,通过改变临时单元、临时力以及单元组的设置来获得多种合理结构形状;通过多个数值算例说明该方法的特性。3.对该方法所生成的结构进行受力性能分析,验证所提方法的可行性和有效性。结论:提出了一种适用于网壳结构的形态创构方法。该方法简单、灵活,可以通过调整临时单元、临时力以及单元组的设置,得出多种以轴力为主要传递荷载方式的合理结构形状。可以为设计者在建筑方案设计阶段提供多种结构形状方案。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号