首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对商业化石墨的理论容量及其他碳基材料昂贵的制备成本等问题,需要寻找1种低成本的新型碳材料。以甘蔗渣为碳源,采用水热碱活化的方法制备多孔活性炭材料,并与传统活化方法制备的活性炭作对比。通过XRD、SEM、BET及电化学性能测试对多孔活性炭材料的性能进行表征。研究结果表明:作为锂离子电池负极材料,水热活性炭(HAC)表现出比传统方法制备的活性炭(TAC)更高的比容量及更好的循环性能(100次循环后仍保持371.3mAh/g的比容量),其主要原因在于HAC独特的分层多孔结构和高比表面积。  相似文献   

2.
以红磷、锡粉和还原氧化石墨烯作为主要反应物,利用机械球磨法成功合成磷化锡/还原氧化石墨烯(Sn_4P_3/RGO)复合材料,并用作钠离子电池的负极材料.采用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、蓝电测试系统和电化学工作站对所获得的样品粉末进行物相、微观形貌以及电化学性能表征.与纯相Sn_4P_3相比, Sn_4P_3/RGO复合材料作为钠离子电池负极材料展示出较为优异的电化学性能.  相似文献   

3.
采用直接沉淀法制备了膨胀石墨负载N掺杂氧化锌催化剂,用XRD和SEM对样品进行表征,以染料甲基橙的光催化降解为模型反应评价了该催化剂的光催化活性。结果表明:N掺杂氧化锌以纳米颗粒的形式分散在具有疏松多孔蠕虫状结构的膨胀石墨片层表面,膨胀石墨为N掺杂氧化锌提供高浓度的三维降解环境,在紫外光区具有良好的催化活性。在最佳条件下降解1h,其降解率可达92%,催化剂在重复使用4次后降解率仍比较高。  相似文献   

4.
《商洛学院学报》2017,(4):49-53
采用化学氧化法,以硝酸为插层剂,分别以马弗炉和微波炉两种不同膨胀方式制备膨胀石墨;并采用超声沉淀法将纳米氢氧化镁负载在膨胀石墨孔隙中,制得改性膨胀石墨。通过正交实验,考察了改性膨胀石墨投加量、Hg2+初始浓度、反应温度和膨胀方式对Hg2+吸附效果的影响;并初步探讨了改性膨胀石墨吸附Hg2+的机理。  相似文献   

5.
通过简单的水热法合成水锌矿(Zn5(CO3)2(OH)6)纳米片,并对其电化学性能进行研究.作为负极材料,水锌矿纳米片首圈放电容量虽然可以达到1 500mAh·g-1,但容量随着循环圈数的增加而不断衰减.为此,我们采用石墨烯复合的方法来提高水锌矿的循环容量.石墨烯的存在可以有效提高水锌矿的导电性,加快电荷转移,同时也可以缓解电极材料在循环过程中发生大的体积变化,提高循环稳定性.  相似文献   

6.
从石墨改性的本质出发,综述了锂离子电池石墨负极材料的改性方法:表面包覆法和掺杂其它元素等.通过改性处理,可有效降低石墨的比表面积,从而大幅度提高石墨负极材料的首次可逆容量和库仑效率,改善电池的循环性能.  相似文献   

7.
纳米结构锐钛矿相TiO_2材料具有储锂性能,可用于锂离子电池的负极材料.为探索不同的结构和形貌对储锂性能产生的影响,本文分别用溶胶凝胶法和静电纺丝法制得纯锐钛矿相的TiO_2纳米颗粒粉末(TiO_2/NPs-400)和TiO_2纳米纤维(TiO_2/NFs-400),并对所得样品的晶相结构和形貌进行了表征.然后通过充放电测试对比研究了它们的储锂性能.结果表明,无论是TiO_2/NPs-400还是TiO_2/NFs-400由于都是纯的锐钛矿相并具有较小的晶粒尺寸,在前50次循环中均表现出优秀的储锂性能.但TiO_2/NFs-400由于具有多孔狭长孔道结构的优势,它的循环性能和倍率性能优于TiO_2/NPs-400.  相似文献   

8.
磷化铜由于其高理论容量和资源丰富等优点,逐渐成为一种拥有发展前景的新型锂离子电池负极材料.但其在充放电过程中存在着严重的体积膨胀和团聚问题,导致其循环性能差、倍率性能低.为此,我们利用水热法和低温磷化法合成了磷化铜/还原氧化石墨烯(Cu3P/rGO)复合材料,并对其物化特性和储锂性能进行了表征与测试.结果表明,rGO的修饰复合能够有效提高Cu3P的电化学性能,为发展新型锂离子电池负极材料提供实验与理论指导.  相似文献   

9.
利用化学气相输运法制备出了过渡金属-磷-三硫化物FePS_3的高质量单晶样品,并对该单晶样品的晶体结构、电输运性质和磁各向异性进行了系统的研究.粉末X射线衍射结构精修显示FePS_3呈单斜晶体结构,具有典型的层状结构特征.面内电阻率随温度降低而升高,呈半导体行为,激活能大小为273 meV.在高温区,面内磁化率和面间磁化率都随温度降低而升高,呈居里-外斯顺磁行为;但是两个方向上磁化率的外斯温度符号相反,表现出明显的各向异性.随着温度的降低,两个方向上的磁化率在118 K附近都急剧减小,然后保持不变,表现出典型的反铁磁相变行为,但是该反铁磁相变具有明显的一级相变特征.  相似文献   

10.
11.
高能量密度富锂锰基正极材料是非常有前景的锂离子电池正极材料,然而差的倍率性能和长循环过程中严重的电压衰减制约其商业化应用.通过少量镧对Li_(1.2)Mn_(0.75)Ni_(0.25)O_2正极材料进行了掺杂改性.电化学测试结果表明,少量的镧掺杂Li_(1.2)[Mn_(0.75)Ni_(0.25)]_(0.99)La_(0.01)O_2材料具体优秀的倍率性能,当电流密度为5 C时,Li_(1.2)[Mn_(0.75)Ni_(0.25)]_(0.99)La_(0.01)O_2电极仍然可提供185.5 mAh g(-1)放电比容量.在0.5 C倍率循环100次后容量保持率为76.5%.此外,循环过程中电压衰减也得到了有效的缓解.电化学性能的改善与镧掺杂后减少的晶格氧释放和扩大的锂层间距密切相关.因此,镧掺杂改性是改善富锂锰基正极材料结构稳定性和电化学性能的一种非常有前途的方法.  相似文献   

12.
研究了以多壁碳纳米管(MWCNT)、石墨和液体石蜡油为原料,制备不同比例的MWCNT糊电极、石墨糊电极和多壁碳纳米管掺杂石墨糊电极(记为MWCNT/CPE),并计算了电极的电活化面积.结果发现:当MWCNT、石墨、液体石蜡油的比例为0.25g:0.25g:1.0mL时,电极重现性、稳定性和响应电流均较好.  相似文献   

13.
采用“烧结-球磨”方法制备Mg0.92 In0.05 Zn0.03三元固溶体合金,减小了Mg的晶格常数.利用粉末X-射线衍射分析合金的相组成、微观结构和吸放氢过程的相转变,通过扫描电镜观察合金的微观形貌及相分布.采用体积法测定合金的等温吸放氢曲线( PCT)和动力学曲线,确定了合金的吸放氢反应焓变、熵变及氢化反应激活能.结果表明: Mg0.92 In0.05 Zn0.03三元固溶体具有良好的活化性能和动力学性能,脱氢反应焓降低至-68.6 kJ/mol H2.  相似文献   

14.
铜-铝-氧化铝复合多孔材料的制备及性能   总被引:1,自引:0,他引:1  
以NaCl为造孔剂制作铜-铝-氧化铝复合多孔材料,制备过程不需要用真空或复杂的装置,是一种既廉价又高效的方法.对烧结后的样品进行SEM、XRD分析,同时,对添加造孔剂与未加造孔剂的样品的孔隙率、抗压强度以及硬度进行了计算和测试.结果表明,不同成分配比会影响复合材料的物相、孔隙率及力学性能.将造孔剂去除前、后的样品相比,两者孔隙率相差10%左右,力学性能相差很大,抗压强度从2.63 MPa变化到17.64 MPa.  相似文献   

15.
利用海蛎壳为载体,将纳米TiO_2和Cu_2O通过正交试验合成新型光催化复合材料。通过X射线衍射、电子扫描显微镜等测试手段对该复合材料进行表征,并研究了该复合材料对刚果红溶液的光催化氧化性能。结果表明,该复合材料表面均匀地排列了粒径10~20 nm的TiO_2和500~600 nm的Cu_2O,对于刚果红溶液的处理在太阳光照射60 min时,可接近紫外光的效果,刚果红初始质量浓度低于50mg/L,处理效果较好,复合材料的最佳投加量为2.0 g/L,该复合材料的处理效果大于单独使用Ti O_2和Cu_2O。表明该复合材料对刚果红处理效果显著,具有巨大的应用前景。  相似文献   

16.
富锂锰基层状氧化物正极材料具有容量高、理论能量密度高和价格低等优点引起了研究者关注,有望成为下一代高比能量电池的优选材料.但该材料循环过程中存在严重的电压和容量衰减问题,限制其商业应用.本文首先总结了引起电压和容量衰减的主要原因:(1)材料自身结构的转化;(2)金属阳离子的不可逆迁移;(3)循环过程中产生电压滞后现象;(4)循环后形成SEI膜.其次归纳了3条有效改进措施:表面包覆、离子掺杂和改进电解液添加剂.最后基于作者的实验结果对该材料的发展进行展望,指出注重电池中各组成部分的协同作用有利于加快富锂锰基正极材料的商业化使用.  相似文献   

17.
LDPE是一种使用量较大的高分子材料,但其存在耐热性不高,硬度低,容易屈服变形等缺点,本文采用低密度聚乙烯搀杂炭黑,研究低密度聚乙烯/炭黑复合材料中炭黑不同含量对其力学性能、热学性能的影响。发现拉伸强度和耐热温度与炭黑的含量呈正比。当炭黑含量为3%时,LDPE/CB复合材料获得了最佳改性效果,LDPE/CB复合材料综合性能为最好。  相似文献   

18.
以仲钼酸铵和硝酸为原料,采用液相化学法制备超细MoO3.研究了表面活性剂类型及浓度对产物形貌的影响.结果表明,阴离子型表面活性剂的分散性能优于阳离子和非离子表面活性剂.在添加浓度为1.8mmol/L十二烷基苯磺酸钠(DBS)时,能够制备出分散性较好、粒径为100nm左右的球形超细MoO3粉末.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号