首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
例1 求点 P(4,0)与抛物线 y~2=2x 上的点的距离的最小值。解:设抛物线上一点 Q(x_1,y_1),则y_1~2=2x_1,|PQ|=(x_1-4)~2~(1/2) y_1~2=(x_1~2-6x_1 16)~(1/2)。∵被开方数二次项的系数为正,∴当 x=3时,(x_1~2-6x_1 16)极小值:=7,|PQ|极小值=7~(1/2)。例2 设 A、B 是椭圆 x~2/a~2 y~2/b~2=1的相邻二顶点,试在(?)上求一点 P,使四边形PAOB 面积为最大。解:设(?)上一点 P(acosθ,bsinθ),则S(?)PAOB=S△AOB S△PAB  相似文献   

2.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

3.
定义若圆上任一点到点 A 的距离与到点 B 的距离的比恒为常数λ(λ>0,λ≠1),则称该圆分有向线段()所成的比是λ;该圆称为有向线段()的定比分圆.定理设 A(x_1,y_1)、B(x_2,y_2)是定点,一个圆分有向线段()所成的比是λ,则该圆的圆心坐标是 x_0=(x_1-λ~2x_2)/(1-λ~2),y_0=(y_1-λ~2y_2)/(1-λ~2),半径是 r=λ|1-λ~2|·|AB|.证明:设 P(x,y)是圆上的动点,由 |PA|/|PB|=λ得(x-x_1)~2 (y-y_1)~2=λ~2[(x-x_2)~2 (y-y_2)~2],经整理,得x~2 y~2-2x·(x_1-λ~2x_2)/(1-λ~2)-2x·(y_1-λ~2y_2)/(1-λ~2)=(λ~2x_2~2 λ~2y_2~2-x_1~2-y_1~2)/(1-λ~2),配方并化简整理,得  相似文献   

4.
1996年中国数学奥林匹克试题1. 题 设H是锐角△ABC的垂心,由A向以BC为直径的圆作切线AP、AQ,切点分别为P、Q,求证:P、H、Q三点共线. 用解析法简证如下: 证 以BC为x轴,BC的中垂线为y轴建立直角坐标系,设B(-1,0),C(1,0),A(x_0,y_0),(x_0~2 y_0~2>1)则以BC为直径的圆的方程为x~2 y~2=1.  相似文献   

5.
抛物线y~2=2px的焦点弦为AB,则y_Ay_B=-p~2,这是抛物线焦点弦的一条常用性质.对一般的弦而言,也有类似的性质,这里,我们给出一组充要条件,揭示弦的性质. 若AB为抛物线y~2=2px的弦,其中A(x_1,y_1)、B(x_2,y_2).则有: ∠AOB为直角x_1x_2 y_1y_2=0 y_1y_2 Ap~2=0; ∠AOB为锐角x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0; ∠AOB为钝角x_1x_2 y_y_2<0 y_1y_2(y_1y_2 4p~2)<0. 证明:cos∠AOB=|AO|~2 |BO|~2-|AB|~2/2|AO|·|BO|=2(x_1x_2 y_1y_2)/2|AO|·|BO|,故∠AOB为直角cos∠AOB=0x_1x_2 y_1y_2=0; ∠AOB为锐角cos∠AOB>0 x_1x_2 y_1y_2>0; ∠AOB为钝角cos∠AOB<0 x_1x_2 y_1y_2<0. 又A、B在抛物线上,故y_1~2=2px_1,y_2~2=2px_2,从而(y_1y_2)~2=4p~2x_1x_2,故x_1x_2 y_1y_2=1/4p~2·y_1y_2(y_1y_2 4p~2). 从而 x_1x_2 y_1y_2=0 y_1y_2 4p~2=0(显然y_1y_2≠0), x_1x_2 y_1y_2>0 y_1y_2(y_1y_2 4p~2)>0, x_1x_2 y_1y_2<0 y_1y_2(y_1y_2 4p~2)<0,得证. 应用这组充要条件,可方便地解决与抛物线弦相关的一类问题.  相似文献   

6.
在直角坐标平面内点P(X_0,y_0),直线l:Ax By C=0,过 P 作 l 的垂线 PQ,设垂足为 Q(x',y'),显然直线 PQ 的方程为:B(x-x_0)-A(y-y_0)=0,令x'-x_0=λA,则 y-y_0=λB,又Q∈l,则有:A(x_0 λA) B(y_0 λB) c=0.解得:λ=-Ax_0 By_0 C/A~2 B~2,显然λ是由点 P 和直线 l 确定的常量.我们把它记作λ(P,l),有时简记为λ.显然,过 P 作 l 的垂线之垂足 Q(x_0 XA,y_0 λB);P 关于 l 的对称点 P'(z_0 2λA,y_0 2λB).  相似文献   

7.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

8.
错在哪里     
1.湖北咸丰李永贵来稿题:过点B(0,-b)作椭圆x~2/a~2 y~2/b~2=1(a>b>0)的弦;求这些弦的最大值。解设M(x_0,y_0)为椭圆上任一点,由两点间的距离公式可得 |BM|~2=(x_0~2-0)~2 (y_0 b)~2=x_0~2 y_0~2 2by_0 b~2, ①因点M(x_0,y_0)在椭圆上,∴x_0~2=(a~2b~2-a~2y_0~2)/b~2,代入  相似文献   

9.
设△OAB的顶点坐标为O(0,0),A(x_1,y_1),B(x_2,y_2)(按逆时针方向排列),则x_1y_1-x_2y_1=|x_1 y_1 x_2 y_2|=|0 0 1 x_1 y_1 1 x_2 y_2 1|=2S_(△OAB)=OA·OBsin∠O.应用这个方法可以把几类条件代数极值问题化为几何极值问题来处理. 例1.设ax by=c(a,b,c∈R~ ,x,y∈R~-),求f(x,y)=mx~(1/2) ny~(1/2)(m,n>0)的极值. 解考虑点A((ax)~(1/2),-(by)~(1/2)),B(n/b~(1/2),m/a~(1/2)),∠AOB=θ,则  相似文献   

10.
92年上海市有这样一道高考题: 设动直线l垂直于x轴,且与椭圆x~2/4 y~2/2=1交于A、B两点,P是l上满足|PA|·|PB|=1的点,求点P的轨迹方程,并说明轨迹是什么图形? 解:如图1,设点P(x,y),点A(x_1,y_1),则B(x,-y_1)。由于A、B两点在椭圆上,所以又由1-x~2/4=y_1~2/2等,得-2相似文献   

11.
解析几何中有一类韦达定理与弦长紧密联系的题型,兹举例说明. 首先,给出一个弦长公式表达式. 设直线y=kx+b与非退化圆锥曲线相交于两点A(x_1,y_1),B(x_2,y_2),则 |AB|=((x_1-x_2)~2+(y_1-y_2)~2)~(1/2)(*) 为使(*)与韦达定理紧相联,自然会注意到  相似文献   

12.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

13.
<正>一、问题的提出这是2010年江苏高考卷试题第18题:在平面直角坐标系xoy中,如图1,已知椭圆(x~2)/9+(y~2)/5=1的左、右顶点为A、B,右焦点为F.设过点T(t,m)的直线TA、TB与椭圆分别交于点M(x_1,y_1)、N(x_2,y_2),其中m>0,y_1>0,y_2<0.(1)设动点P满足PF~2-PB~2=4,求点P  相似文献   

14.
《平面解析几何》教材中关于点到直线的距离公式的证明较为复杂,本文给出一个简化证明,供大家参考,本证明的核心在于对垂足的处理.证明:已知点 P(x_0,y_0)和直线 l:Ax By C=0,先设 A≠0,B≠0,又设点 P 到直线 l 的垂线为 l′,垂足为 Q(x_1,y_1),由l′⊥l 可知l′的斜率为(B/A)。所以  相似文献   

15.
从平面几何到代数、立体几何和解析几何,证明三点共线的命题、方法、技巧,实在不少,它们都可以归结为等价命题.(1)P、Q、R 三点共线(在同一条直线上).(2)P 在直线 QR 上.(3)P 到直线 QR 的距离为0.(4)P、Q、R 都是平面α与β的公共点.(5)P、Q、R 是△ABC 外接圆上一点分别在直线AB、BC、CA 上的射影.(6)S_(△PQR)=0。(7)三点 P、Q、R 在直线 AB 同侧,且 S_(△PAB)=S_(△QAB)=S_(△RAB).(8)线段 PQ、QR、PR 中,有两条之和等于第三条.(9)k_(PQ)=k_(PR).(10)若直线 PQ 的方程为 Ax By C=0,则直线 PR 的方程为 kAx kBy kC=0(k≠0为常数).若设三点 P、Q、R 的坐标分别为(x_1,y_1)、(x_2,y_2)、(x_3,y_3),则有(11)(x_3,y_3)满足方程(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1).(12)设λ_1=(x_1-x_2)/(x_2-x_3),λ_2=(y_1-y_2)/(y_2-y_3),则λ_1=λ_2.  相似文献   

16.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

17.
定理 设△ABC顶点为A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),如y_1≥y_2,y_3,则△ABC方程为 |2f_1-2△ |f_2|| |f_2|=2△。 (1)其中△表示△ABC的面积,而  相似文献   

18.
本文利用正投影的概念将点到直线与点到平面的距离公式统一起来并作推了广。我们证明了:Ⅰ 设O≠δ=(a_1,a_2,…,a_n)∈R~n,则R~n中的点(y_1,y_2,…,y_n)到R~n的子空间W={x_1,x_2,…,x_n)∈R~n|sum from i=1 n(a_ix_i=0}的距离为|sum from i=1 n(a_iy_i)/(sum from i=1 na_i~2)~(1/2);Ⅱ 设O≠δ=(a_1,a_2,…,a_n,…)∈l~2,则l~2中的点(y_1,y_2,…,y_n,…)到l_2的子空间W={(x_1,x_2,…,x_n,…)∈l~2|sum from n=1 ∝(a_nx_n)}的距离为|sum from n=1 ∝(a_ny_n)|/(sum from n=1 ∝a_n~2)~(1/2)。  相似文献   

19.
1 定理及推论 定理 在直角坐标系中,设;△OAB的顶点坐标为O(0,0),A(x_1,y_1),B(x_2,y_2),且点O,A,B按逆时针方向排列,记∠AOB=θ(下同),那么x_1y_2-x_2y_1=2S△OAB=|为OA|·|OB|·sinθ. 证明 设直角坐标系中,以坐标原点O为顶点,射线O_x为始边,OA,OB为终边的角分别记为θ_1,θ_2,不妨设θ_1,θ_2∈[0,2π),记|OA|=r_1,|OB|=r_2,  相似文献   

20.
先看一个例题,如图1,⊙O的方程为x~2+y~2=1,A(2,1)为圆外一点,AP,AQ是⊙O的两条切线,P,Q是切点,求切点弦PQ的方程。解:据设,过点P的圆的切线方程为x_1a+y_1y=1(1)∵A(2,1)在切线上,∴2x_1+y_1=1,∴y_1=1-2x_1,同理y_2=1-2x_2。由两点式得切点弦PQ的方程为(x-x_1)/(x_1-x_2)=(y-(1-2x_1))/((1-2x_1)-(1-2x_2))经整理得2x+y=l(2) 方程(2)正好与方程(1)中把P(x_1,y_1)的坐标换成A的坐标。这是巧合吗?不!有如下结论:自圆外一点A(m,n)向圆引两切线,所得切点弦方程与切点为(x_1,y_1)的圆的切线方程中把(x_1,y_1)换成(m,n)的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号