首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Many science curricula and standards emphasise that students should learn both scientific knowledge and the skills associated with the construction of this knowledge. One way to achieve this goal is to use inquiry-learning activities that embed the use of science process skills. We investigated the influence of scientific reasoning skills (i.e. conceptual and procedural knowledge of the control-of-variables strategy) on students’ conceptual learning gains in physics during an inquiry-learning activity. Eighth graders (n?=?189) answered research questions about variables that influence the force of electromagnets and the brightness of light bulbs by designing, running, and interpreting experiments. We measured knowledge of electricity and electromagnets, scientific reasoning skills, and cognitive skills (analogical reasoning and reading ability). Using structural equation modelling we found no direct effects of cognitive skills on students’ content knowledge learning gains; however, there were direct effects of scientific reasoning skills on content knowledge learning gains. Our results show that cognitive skills are not sufficient; students require specific scientific reasoning skills to learn science content from inquiry activities. Furthermore, our findings illustrate that what students learn during guided inquiry activities becomes visible when we examine both the skills used during inquiry learning and the process of knowledge construction. The implications of these findings for science teaching and research are discussed.  相似文献   

2.
We investigated how 2 different curricular scaffolds (context-specific vs. generic), teacher instructional practices, and the interaction between these 2 types of support influenced students' learning of science content and their ability to write scientific arguments to explain phenomena. The context-specific scaffolds provided students with hints about the task and what content knowledge to use in or incorporate into their writing. The generic scaffolds supported students in understanding a general framework (i.e., claim, evidence, and reasoning) regardless of the content area or task. This study focused on an 8-week middle school chemistry curriculum that was enacted by 6 teachers with 578 students during the 2004–2005 school year. Analyses of identical pre- and posttests as well as videotapes of teacher enactments revealed that the curricular scaffolds and teacher instructional practices were synergistic in that the effect of the written curricular scaffolds depended on the teacher's enactment of the curriculum. The context-specific curricular scaffolds were more successful in supporting students in writing scientific arguments to explain phenomena, but only when teachers' enactments provided explicit domain-general support for the claim, evidence, and reasoning framework, suggesting the importance of both types of support in successful learning environments.  相似文献   

3.
4.

Informal learning experiences have risen to the forefront of science education as being beneficial to students' learning. However, it is not clear in what ways such experiences may be beneficial to students; nor how informal learning experiences may interface with classroom science instruction. This study aims to acquire a better understanding of these issues by investigating one aspect of science learning, scientific reasoning ability, with respect to the students' informal learning experiences and classroom science instruction. Specifically, the purpose of this study was to investigate possible differences in students' scientific reasoning abilities relative to their informal learning environments (impoverished, enriched), classroom teaching experiences (non-inquiry, inquiry) and the interaction of these variables. The results of two-way ANOVAs indicated that informal learning environments and classroom science teaching procedures showed significant main effects on students' scientific reasoning abilities. Students with enriched informal learning environments had significantly higher scientific reasoning abilities compared to those with impoverished informal learning environments. Likewise, students in inquirybased science classrooms showed higher scientific reasoning abilities compared to those in non-inquiry science classrooms. There were no significant interaction effects. These results indicate the need for increased emphases on both informal learning opportunities and inquiry-based instruction in science.  相似文献   

5.
This quantitative case study used a pre- and posttest design for exploring the gender differences in secondary school students’ (n?=?131, 45 males and 86 females) learning of the force concept when an interactive engagement type of teaching was used. In addition, students’ ability to interpret multiple representations (i.e., representational consistency) was documented by a pre- and posttest and scientific reasoning ability by a pretest only. Males significantly outperformed females in learning of the force concept, pre- and posttest representational consistency, and pretest scientific reasoning. However, the gender difference in learning of the force concept was not significant when ANCOVA was conducted using pretest results of representational consistency and scientific reasoning as covariates. This appeared to indicate that the gender difference in learning gain was related to students’ abilities before the instruction. Thus, the teaching method used was equally effective for both genders. Further, our quantitative finding about the relation between representational consistency and learning of the force concept supports the assumption that multiple representations are important in science learning.  相似文献   

6.
Climate change is one of the most challenging problems facing today’s global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially non-scientists, to grasp. Science education is a field which can play a crucial role in fostering meaningful education of students to become climate literate citizens (e.g., NOAA 2009; Schreiner et al., 41, 3–50, 2005). If students are, at some point, to participate in societal discussions about the sustainable development of our planet, their learning with respect to such issues needs to be supported. This includes the ability to think critically, to cope with complex scientific evidence, which is often subject to ongoing inquiry, and to reach informed decisions on the basis of factual information as well as values-based considerations. The study presented in this paper focused on efforts to advance students in (1) their conceptual understanding about climate change and (2) their socioscientific reasoning and decision making regarding socioscientific issues in general. Although there is evidence that “knowledge” does not guarantee pro-environmental behavior (e.g. Schreiner et al., 41, 3–50, 2005; Skamp et al., 97(2), 191–217, 2013), conceptual, interdisciplinary understanding of climate change is an important prerequisite to change individuals’ attitudes towards climate change and thus to eventually foster climate literate citizens (e.g., Clark et al. 2013). In order to foster conceptual understanding and socioscientific reasoning, a computer-based learning environment with an embedded concept mapping tool was utilized to support senior high school students’ learning about climate change and possible solution strategies. The evaluation of the effect of different concept mapping scaffolds focused on the quality of student-generated concept maps, as well as on students’ test performance with respect to conceptual knowledge as well as socioscientific reasoning and socioscientific decision making.  相似文献   

7.
The purpose of this study was to compare the associations of epistemic beliefs in science, performance of scientific reasoning in university students from Taiwan and India, and the relations with their science learning experiences. A total of 126 university students including 67 from Taiwan and 59 from India who had science and mathematics backgrounds were involved in the study. Students’ epistemic beliefs in science were assessed by the SEV questionnaire, while their reasoning performance and learning experiences were prompted by open-ended questions and survey items. Content analysis was performed to analyze their scientific reasoning, and correlation analysis, t tests and ANOVA were applied to reveal the associations between variables. The results showed that students from both countries differed in epistemic beliefs in the dimensions of certainty, development and justification. While few students from either country performed successfully in identifying genuine evidence and giving full rebuttals, Taiwanese participants seemed to demonstrate slightly better scientific reasoning. It was found that the Indian students were more balanced in receiving structured and engaged learning experiences. Varying associations for the students from the different countries were found between epistemic beliefs and scientific reasoning performance, and between epistemic beliefs and science learning experiences.  相似文献   

8.
Students with learning disabilities (LD) are increasingly expected to master content in the general education curriculum, making the need for effective instructional supports more important than ever before. Science is a part of the curriculum that can be particularly challenging to students with LD because of the diverse demands it places on cognitive performance. In this summary we review a number of strategies that have been validated for learners with LD. The strategies include supports for (a) verbal learning of declarative information, (b) processing information in texts, (c) activities‐based instruction/experiential learning, (d) scientific thinking and reasoning, and (e) differentiated instruction. We also summarize the research regarding the impact of teacher behavior on achievement for students with LD in science education. The strategies reviewed yield tangible and positive effect sizes that suggest that their application to the target domain will substantially improve outcomes for students with LD in science education.  相似文献   

9.
The present study examines the mutual interaction between students' writing and scientific reasoning among sixth‐grade students (age 11–12 years) engaged in scientific inquiry. The experimental task was designed to promote spontaneous record keeping compared to previous task designs by increasing the saliency of task requirements, with the design goal of making the relationship between record keeping and inquiry strategies more explicit and visible. Compared to previous studies, this new task design resulted both in a higher amount of record keeping overall and in a higher quality of information, which is interpreted to be a result of increased participants’ metatask and metastrategic knowledge arising from greater engagement with the task. The study found a significant relationship between the quality of students' record keeping and the inquiry strategies that were investigated. However, this relationship varied depending on the type of inquiry strategy. Strategies that are employed during the design of experiments (i.e., factorial combination strategy and control‐of‐variables strategy [CVS]) were statistically related to the number of complete comments (plans and intents), but not with the total number of comments. In contrast, the study found that for strategies employed while evaluating evidence (i.e., drawing inferences), student production of quality records is a necessary but not sufficient condition for effective evidence evaluation; in addition to recording high‐quality information, students must also review their records (both from design and evaluation phases).  相似文献   

10.
In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.  相似文献   

11.
Both science and technology education have a commitment to teaching process; investigations or scientific method in science, design in technology, and problem solving in both areas. The separate debates in science and technology education reveal different curricular emphases in processes and content, reflecting different goals, and pedagogic and educational research traditions. This paper explores these differences and argues that each curriculum area can learn from the other. Despite the interest in processes, problem solving remains neglected in each area, particularly with respect to empirical accounts of student problem-solving activities and the supporting pedagogy. This paper draws on the situated learning and social constructivist literature to provide insights into problem solving in technology education. The research reported here, gives accounts of the problem-solving strategies of English secondary school students. These strategies represent their responses to technology activities and the learning environment created by teachers.  相似文献   

12.
Piaget's theory has profoundly influenced science education research. Following Piaget, researchers have focused on content-free strategies, developmentally based mechanisms, and structural models of each stage of reasoning. In practice, factors besides those considered in Piaget's theory influence whether or not a theoretically available strategy is used. Piaget's focus has minimized the research attention placed on what could be called “practical” factors in reasoning. Practical factors are factors that influence application of a theoretically available strategy, for example, previous experience with the task content, familiarity with task instructions, or personality style of the student. Piagetian theory has minimized the importance of practical factors and discouraged investigation of (1) the role of factual knowledge in reasoning, (2) the diagnosis of specific, task-based errors in reasoning, (3) the influence of individual aptitudes on reasoning (e.g., field dependence-independence), and (4) the effect of educational interventions designed to change reasoning. This article calls for new emphasis on practical factors in reasoning and suggests why research on practical factors in reasoning will enhance our understanding of how scientific reasoning is acquired and of how science education programs can foster it.  相似文献   

13.
Thoughtful decision-making to resolve socioscientific issues is central to science, technology, society, and environment (STSE) education. One approach for attaining this goal involves fostering students’ decision-making processes. Thus, the present study explores whether the application of decision-making strategies, combined with reflections on the decision-making processes of others, enhances decision-making competence. In addition, this study examines whether this process is supported by elements of self-regulated learning, i.e., self-reflection regarding one’s own performance and the setting of goals for subsequent tasks. A computer-based training program which involves the resolution of socioscientific issues related to sustainable development was developed in two versions: with and without elements of self-regulated learning. Its effects on decision-making competence were analyzed using a pre test-post test follow-up control-group design (N?=?242 high school students). Decision-making competence was assessed using an open-ended questionnaire that focused on three facets: consideration of advantages and disadvantages, metadecision aspects, and reflection on the decision-making processes of others. The findings suggest that students in both training groups incorporated aspects of metadecision into their statements more often than students in the control group. Furthermore, both training groups were more successful in reflecting on the decision-making processes of others. The students who received additional training in self-regulated learning showed greater benefits in terms of metadecision aspects and reflection, and these effects remained significant two months later. Overall, our findings demonstrate that the application of decision-making strategies, combined with reflections on the decision-making process and elements of self-regulated learning, is a fruitful approach in STSE education.  相似文献   

14.
Augmented reality (AR) is currently considered as having potential for pedagogical applications. However, in science education, research regarding AR-aided learning is in its infancy. To understand how AR could help science learning, this review paper firstly has identified two major approaches of utilizing AR technology in science education, which are named as image-based AR and location-based AR. These approaches may result in different affordances for science learning. It is then found that students’ spatial ability, practical skills, and conceptual understanding are often afforded by image-based AR and location-based AR usually supports inquiry-based scientific activities. After examining what has been done in science learning with AR supports, several suggestions for future research are proposed. For example, more research is required to explore learning experience (e.g., motivation or cognitive load) and learner characteristics (e.g., spatial ability or perceived presence) involved in AR. Mixed methods of investigating learning process (e.g., a content analysis and a sequential analysis) and in-depth examination of user experience beyond usability (e.g., affective variables of esthetic pleasure or emotional fulfillment) should be considered. Combining image-based and location-based AR technology may bring new possibility for supporting science learning. Theories including mental models, spatial cognition, situated cognition, and social constructivist learning are suggested for the profitable uses of future AR research in science education.  相似文献   

15.
Science education models for secondary and college students as well as K‐12 teachers have been dominated by classroom‐based approaches. Recently, research apprenticeships wherein learners worked with practicing scientists on authentic scientific research have become increasingly popular. The purpose of this critical review of the literature was to review and synthesize empirical studies that have explored learning outcomes associated with research apprenticeships for science learners. We reviewed 53 studies of scientific research apprenticeship experiences for secondary students, undergraduates and teachers, both pre‐service and in‐service. The review explored various learning outcomes associated with participation in research apprenticeships. These outcomes included effects of apprenticeship experiences on participant career aspirations, ideas about the nature of science (NOS), understandings of scientific content, confidence for doing science and intellectual development. The extant literature supported many of the presumed positive associations between apprenticeship experiences and desired learning outcomes, but findings related to some themes (e.g., NOS understandings) supported conflicting conclusions. Implications included importance of the length of the apprenticeship, need to explicitly place attention on desired outcomes, and engagement of participants. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:235–256, 2010  相似文献   

16.
The mechanism linking instruction in scientific topics and instruction in logical reasoning strategies is not well understood. This study assesses the role of science topic instruction combined with logical reasoning strategy instruction in teaching adolescent students about blood pressure problems. Logical reasoning instruction for this study emphasizes the controlling-variables strategy. Science topic instruction emphasizes variables affecting blood pressure. Subjects receiving logical reasoning instruction link their knowledge of blood pressure variables to their knowledge of controlling variables more effectively than those receiving science topic instruction alone—their specific responses show how they attempt to integrate their understanding.  相似文献   

17.
Inquiry experiences can provide valuable opportunities for students to improve their understanding of both science content and scientific practices. However, the implementation of inquiry learning in classrooms presents a number of significant challenges. We have been exploring these challenges through a program of research on the use of scientific visualization technologies to support inquiry-based learning in the geosciences. In this article, we describe 5 significant challenges to implementing inquiry-based learning and present strategies for addressing them through the design of technology and curriculum. We present a design history covering 4 generations of software and curriculum to show how these challenges arise in classrooms and how the design strategies respond to them.  相似文献   

18.
This study examines individual and classroom-level differences in motivation and strategy usage in sixth- and seventh-grade middle school science. Results suggest that students who experience academic difficulties differ from both high achieving and special education students on measures of self-efficacy, goal orientation, expectancy, value, and self-concept of ability in science, with students who experience academic difficulties occasionally demonstrating less adaptive patterns of motivation and cognition than special education students in science. We used hierarchical linear modeling to examine between-classroom differences in learning-focused goal orientation. Findings indicate that students who have science teachers that use ability-focused instructional practices (e.g., pointing out the best students as an example to others) are less learning focused, and exhibit a diminished relation between self-concept of ability and being learning focused in science. Implications for science education reform are discussed.  相似文献   

19.
Research has found the learning cycle to be effective for science instruction in hands‐on laboratories and interactive discussions. Can the learning cycle, in which examples precede the introduction of new terms, also be applied effectively to science text? A total of 123 high school students from two suburban schools were tested for reasoning ability, then randomly assigned to read either a learning cycle or traditional text passage. Immediate and delayed posttests provided concept comprehension scores that were analyzed by type of text passage and by reasoning level. Students who read the learning cycle passage earned higher scores on concept comprehension questions than those who read the traditional passage, at all reasoning levels. This result supports the hypothesis that reading comprehension and scientific inquiry involve similar information‐processing strategies and confirms the prediction that science text presented in the learning cycle format is more comprehensible for readers at all reasoning levels. © 1999 John Wiley & Sons, Inc. J Res Sci Teach 36: 23–37, 1999.  相似文献   

20.
Reasoning skills are major contributors to academic and everyday life success. Epistemological commitments (ECs) are believed to underlie reasoning processes and, when considered, could do much in delineating the complex nature of scientific reasoning. This study examined the relationship between ECs and scientific reasoning among college science students. Prior knowledge (PK) was factored in as an intervening variable. Participants were 139 college students enrolled in two physics courses in a large Midwestern university. They completed an online questionnaire, which assessed their PK regarding buoyancy in liquids and EC to the consistency of theory with evidence. Responses to the online questionnaire were used to select 40 participants with varying levels of PK and EC. These participants were divided into four groups, each with 10 students, representing four conditions: High PK–High EC, High PK–Low EC, Low PK–High EC, and Low PK–Low EC. These groups allowed using a 2 × 2 factorial quasi‐experimental design to examine the relationship between participants' reasoning and ECs, accounting for their PK. The quality of participants' reasoning was assessed during individual interviews, which presented them with four problem‐solving tasks involving objects immersed in water. Two‐way analysis of variance (ANOVA) indicated the absence of interaction between PK and EC. The results showed that the higher the ECs were, the higher the quality of reasoning was for comparable levels of PK. Additionally, it was found that PK impacted reasoning more strongly when ECs were weaker. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1064–1093, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号