首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谈职业核心能力中解决问题的能力   总被引:1,自引:0,他引:1  
职业核心能力培训的全面展开,迫切需要对其子项进行深入地研究。人们对问题及问题解决已有的理解不能延及到职业活动领域。现行培训中解决问题的程序和能力还需要进一步完善。预见和发现问题、面对问题的态度、对问题解决的品质评估也应是解决问题的能力和程序中的重要部分。在解决问题的能力培训中,既需要抓住解决问题的通则,同时还需要从教学角度出发.将区别于其它职业能力的部分作为能力培训的重点。  相似文献   

2.
中职数学教学不能只满足于教学生多少数学知识,而应将教学生如何学习,以及培养学生学习数学的良好习惯,摆在数学教学的首要位置。解题后反思是一种良好而且极为重要的学习习惯,如何反思?值得探讨。文章主要探讨中职数学解题后反思的策略。  相似文献   

3.
Abstract

Twelve middle school students' use of computer tools to manage and manipulate Internet-based hypermedia resources was investigated. Tools were proposed to support higher order thinking about hypermedia resources to help students find, frame, and resolve open-ended science problems. Tools alone were insufficient to help students manage hypermedia information for solving open-ended problems. Students more frequently applied lower order tool functions (e.g., information collection) than higher order tool functions (e.g., reasoning). Students typically resolved problems with original solutions, but tools were used infrequently to develop evidence-based arguments justifying new ideas. Computer tools alone may be insufficient to help students manage extensive hypermedia resources. Together with additional support structures, however, tool potential may be realized.  相似文献   

4.
本文从引导学生积极反思自己的学习活动、逐渐使反思成为自觉的学习习惯的目的出发,对中等职业学校学生数学解题的反思习惯进行了调查,在分析调查结果的基础上,对培养学生解题后反思习惯和反思的思维品质提出了建议。  相似文献   

5.
6.
高师数学专业二年级学生数学解题中的元认知对解题成绩的影响如下:(1)元认知的认知体验因素对简单题成绩有显著影响和回归效应.(2)元认知的任务知识、策略知识、认知体验、情感体验、评价等因素对难题成绩有显著影响,而情感体验与反思因素有显著回归效应.(3)元认知的情感体验、评价、反思、调控因素对开放题成绩有显著影响,而情感体验与反思、调控因素有显著回归效应.(4)高、低元认知水平组的难题、开放题成绩存在显著差异.  相似文献   

7.
问题求解一直是人工智能学科的主题之一。本文建立环境C下的限制物无可拓空间用于包括矛盾问题在内的一般问题的表示及求解,并给出了问题求解策略及求解算法,使问题求解更具智能色彩。  相似文献   

8.
9.
Problem Solving:     
《学校用计算机》2013,30(3-4):17-28
No abstract available for this article.  相似文献   

10.
从应用题到解决问题,这绝不仅是名称上的变化.弄清楚这其中变化的实质,有助于我们更好地继承应用题教学宝贵的、成功的经验,也有助于我们更好地开展解决问题的教学.该文立足于应用题和解决问题的内涵,探讨解决问题的教育价值,并结合当今小学数学教学实际,提出了解决问题的教学建议.  相似文献   

11.
The authors express the view that algorithms and heuristics may be used to help improve professional problem solving abilities provided that they are appropriately contextualised within the relevant discipline.

The first part of this paper presents a basic algorithm applied to the engineering discipline. A similar algorithm applicable in the solving of legal problems is presented later in the paper. Problem complexity and related variables are discussed as are ways of teaching problem solving and integrating problem solving into the curriculum. Typical problem solving exercises are described.  相似文献   


12.
Effects of proportion of Latin suffixes and of Content Area upon newspaper article comprehension of eighth graders, as measured by cloze procedure, were investigated using a 3 x 3 factorial design. Statistically reliable mean differences were obtained between cloze test performance on Science and T. V. --Theatre passages and between such performance at High versus Medium and Low levels of Latin suffix density. The difference in mean performance across Content Areas is explained in terms of other linguistic factors-particularly differential density of prepositions.  相似文献   

13.
《学校用计算机》2013,30(3-4):207-217
No abstract available for this article.  相似文献   

14.
15.
Metacognition is considered by most educationists as an element necessary for many cognitive tasks. In problem solving, it has been said that possessing knowledge alone is insufficient and problem solvers need to exhibit high level cognitive skills like “self-regulation skills” (also known as metacognitive strategies) for successful problem solving.

A study on students' metacognitive strategies was carried out with over a thousand secondary and pre-university students from 12 schools. A questionnaire adapted from Biggs (1987) was administered to students at various levels (Secondary 2, Secondary 4, Pre-University 1), from different academic tracks (General, Science, Arts) and academic streams (Special, Express, and Normal). They were required to self-report on their metacognitive beliefs; their use of metacognitive strategies in mental tasks involving memory, problem solving and comprehension; and their attitudes towards the learning of various academic subjects. 20 items from the questionnaire which were related to problem solving were categorized into four stages, namely, orientation, organisation, execution and verification and data from these items were analysed.

Some findings that emerged were:

  • (a) Normal stream students exhibited a lower usage of metacognitive strategies as compared to students from the Express and Special streams.

  • (b) Metacognitive strategies used by Normal stream students tended to be of the “surface” type.

  • (c) There was no significant difference in the frequency of usage of metacognitive strategies between students from different academic tracks.

  • (d) During the problem solving process, students spent most time on evaluation of answers rather than on monitoring their understanding.

  • (e) Students from different levels (Secondary 2, Secondary 4 and Pre-University) exhibited similar frequency of usage of metacognitive strategies in problem solving.

  • The implications of these findings on future research and development projects as well as the teaching of metacognitive strategies are discussed in the paper.

  相似文献   

16.
思维方式包括三个部分:自然观、价值观和方法论。中国传统的自然观重整体轻部分,重政治伦理轻自然;传统的方法论重直觉顿悟方法轻科学实证方法;传统的价值导向注重经验实用轻理论。本文从这三个方面出发,通过中西对比,揭示了中国传统思维下中国不能产生近代科学和技术的原因。  相似文献   

17.
学生几何解题中的错误可分为以下5类:“阅读理解(包括对图形的理解)”错误;“转换”错误;“加工技能”错误;“策略选择”错误;“编码”错误.其中“加工技能”的错误率最高,其次是“策略选择”.而导致错误的主要原因是过强的动机、不正确的观念和认知图式存在缺陷。  相似文献   

18.
拟定解题计划的关键点之一是抓住问题的实质 ,对问题进行恰当的变更 ,变复杂为简单、变抽象为直观、变陌生为熟悉。通常可以通过对问题的条件、结论及原问题等三个方面作出转换 ,使题目由难变易 ,从而达到易于解题的目的  相似文献   

19.
大多数教育工作者都认为问题解决很重要,但是他们对什么是问题解决持有不同观点,在怎样教给学生问题解决的本领上也没有达成一致意见。各种不同观点主要集中于将问题解决视为教育目标、教育方法以及技能训练之间的差异问题上。其一,目标型问题解决不应只限于良构问题解决,而应该延伸到现实问题解决;其二,对初学者来说,方法型问题解决有其明显的局限性,给予这些学习者足够帮助,对于培养他们的问题解决能力具有重要作用;其三,技能型问题解决不应被看作是只在培养专长过程的初期才会出现,而应被视为在系统1模式与系统2模式中平行发展的一个过程。总结以上观点,综合学习设计模式完全可以用来促进此三种类型的问题解决,并其本回答了问题解决最好应该怎样教的问题。  相似文献   

20.
陈萍  李勇 《衡水学院学报》2009,11(4):108-109
逆向思维是创造性思维的一种特殊形式,在数学解题中应用十分广泛.在多年的数学教学实践中,归纳可使用逆向思维方式有效解决数学问题的几点经验,并结合对实际教学问题的分析,阐述逆向思维是数学解题中值得深入研究的一种思维方式和策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号