首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正三角变换是运算、化简、求值、证明过程中运用比较多的变换,除了掌握必要公式外,还要掌握常用的几种三角变换的技巧.下面就介绍几种常用的三角变换技巧,供同学们参考.一、角的变换例1已知3sinβ=sin(2α+β),(α或α+β的终边不在y轴上),求证:tan(α+β)=2tanα.  相似文献   

2.
三角叠加公式也叫做辅助角公式,它不仅可以处理三角函数问题.而且适当地变换、合理转化后,它在解决许多非三角问题中仍能发挥重要作用.三角迭加公式:对于正弦与余弦的叠加函数asinx+bcosx,存在终边通过点(a,b)的角φ∈[0,2π),使得  相似文献   

3.
笔者在中根据传统教材:把“讲诱导公式的目的,在于求任意角的三角函数值”的片面性观点,提出了诱导公式是恒等变换公式的主张.并论证了诱导公式有恒等变换角、函数名称、甚至于函数前面的符号的特殊功能,把诱导公式当恒等变换公式来思考问题,可以扩大其他三角公式的直接应用范围.把解决三角运算的能力提  相似文献   

4.
在解决三角求值问题中 ,学生往往出现错解、漏解、增解甚至无从下手 ,原因是对题设条件理解不够深刻 ,不善于分析题设条件与结论中的角的相互关系 ,特别是对角的范围不注意 .本文通过例题说明上述问题 .一、注意考察轴线角这里所说的轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 ,解题时要小心 ,避免漏解、增解 .例 1 已知cosα =3cos β ,cotα =4cotβ ,求sinα .分析 题中涉及两个角α、β ,但求sinα ,故可利用sin2 β+cos2 β=1消去 β角 .由题设条件 ,得sin…  相似文献   

5.
轴线角是指终边在坐标轴上的角,轴线角不属于任何象限.轴线角有以下七种:①终边在x轴的非负半轴上,即{a|a=k·360°,h∈z}.②终边在x轴的非正半轴上,即{a|a=180° k·360°,k∈z}.③终边在y轴的非负半轴上,即{a|a=90° k·360°,k∈Z}.④终边在y轴的非正半轴  相似文献   

6.
三角变换的实质为“挖掘题设条件,寻求差异,选用三角公式变名,变角,变结构”完成求值,化简,证明等差别题.其中“目标意识,凑角入手,消除差异,合理选用公式”起着决定性的作用.本文就三角变换中“目标意识”的应用探讨如下. 一、目标意识,凑角入手,消除差异  相似文献   

7.
三角变换是体现化归思想方法、培养逻辑推理能力的重要内容,是处理许多数学问题和实际应用问题的工具.正确的进行三角变换,不仅要求对教材中的公式有准确的理解,要求能够根据不同的变换目的,对公式进行合理地选择,还要求有一定的观察、运算和分析、综合的能力.下面举例说明进行三角变换的基本途径.一、角的变换在三角变换中,常常涉及到许多相异的角,变角就是从题设条件和结论中寻找一个变形的目标,将其余的角都向这个目标转化,其转化的途径是确立角之间的和、差、倍、半、互补、互余等之间的运算关系或运算结果,合理选择公式.例1.已知2cos(2α β) 3cosβ=0,求tan(α β)tanα的值.分析:观察角度,发现已知式与欲求式中的角存在联系:2α β=(α β) α,而β=(α β)-α,据此,可考虑对已知式运用和、差角公式展开.解:已知即.2cos[(α β) α] 3cos[(α β)-α]=0,即2cos(α β)cosα-2sin(α β)sinα 3[cos(α β)cosα sin(α β)sinα]=0∴5cos(α β)cosα=-sin(α β)sinα,即.tan(α β)tanα=-5二、函数名称的变换当所...  相似文献   

8.
经过几轮高中数学教学实践 ,越来越感觉到 ,在三角函数教学中 ,对三角函数定义 (下文简称定义 )的教学可谓重中之重 .定义是整个三角部分的奠基石 ,它贯穿于与三角有关的各部分并起着关键作用 .下面谈谈笔者对定义教学的一些经验和感受 .一、重视定义教学 ,奠定三角基础1 指导学生把角规范地“安装”在平面直角坐标系中 ,以便用坐标工具研究角的内在规律 :角的顶点在坐标原点 ,始边与x轴正半轴重合 ,终边在坐标平面内 .指导学生自主地讨论角α终边所在的各类位置情况及其范围表示 ,终边相同角的表示 .(注 :这一点对后续的问题解决也很重要 …  相似文献   

9.
已知某些条件求三角函数的值或对应角是三角习题中常见题型 .这类习题难度不大 ,但学生在处理此类习题时常出现漏解、增解现象 .究其原因 ,是对题设中隐含着的角的范围挖掘不够所致 .本文结合具体例子谈谈这类习题中应注意挖掘的几个方面 .1.注意轴线角的挖掘轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 .解题时应注意挖掘 .例 1 已知sinα =2sinβ ,tgα =3tgβ,求cosα .误解 :∵cosα =sinαtgα=2sinβ3tgβ=23 cosβ ,∴cosβ =32 cosα .又sinβ …  相似文献   

10.
本文由余弦的和角公式 C_(α β)出发来推导诱导公式.从而提供了三角教材另一种可能的编排顺序,为此先求角-α与角α间的三角函数关系.设 PP′⊥x 轴与α、α的终边相交于 P(x,y),P′(x′,y′).那末,x′=x,y′=-y,r′=r,由此,sin(?α)=(y′)/(r′)=(-y)/r=-sinα;cos(-α)=(x′)/r=x/r=cosα;  相似文献   

11.
三角恒等变换是高中数学内容的重要组成部分,是三角函数的基础,同时也是高中生应具备的数学能力之一.解决三角恒等变换问题时应根据教材内容,熟悉三角函数,学会灵活适用各种公式中,进而增强其变换意识.变角是解决三角恒等变换的重要方法,巧用“变角”,便于将已知角与未知角相连接起来,进而寻找各个角之间的关系,轻松解题.本文以实例探讨如何应用“变角”来解决三角恒等问题.  相似文献   

12.
三角复习的教和学三角在数学中是一门工具学科。它以任意角的三角函数定义为基础,导出三套公式——同角三角函数的关系、诱导公式以及两角和与差、倍角、半角、积化和差、和差化积公式.并应用它们来求值、化简和解三角方程等.三角函数的概念与性质是三角复习的基础,要渗透在运算中;三角函数式的变  相似文献   

13.
三角问题中涉及到多种不同形式或大小的角、多种函数名称、多种运算形式,需用的公式多、拓展性强、应用灵活,这都给求解三角问题带来一定的困难.教学中若能注意渗透对立统一观点,并运用这一观点指导寻求解题思路,往往能使解题变得有章可循.具体做法是:观察分析差异,并从最显眼的差异入手,设法通过变角、变名或变式等手段寻找联系,有目的地选择运用公式促进矛盾双方的相互转化,以求达到和谐统一,即找差异、寻联系、促转化、求统一.下面针对三角中的一些典型问题分类说明.1 求值问题11 知角求值遵循大角向小角统一、非特…  相似文献   

14.
对中学生来说,解三角不等式(组)是一个较难的问题,出现增解或漏解的情况比较严重。主要原因是没有掌握方法及步骤。下面就解三角不等式(组)的方法及步骤作如下介绍: 1.形如f(x)△a的三角不等式 注:“f”表示三角函数符号;“△”表示不等符号>、<、≥、≤; a∈R。 1.1 三角函数线法 第一步:根据三角函数线,确定f(x)△a的解x终边所落在的区域。 第二步:根据终边相同角的表示法,表示与区域边界重合的所有角,确定不等式解区间的左右端点数。  相似文献   

15.
有关三角函数的求值、化简、证明通称为三角变换,所用的“武器”当然是诸多三角恒等变形公式.可这些公式太多,三角函数的定义式、同角三角函数的关系式、诱导公式、和角公式、差角公式、倍角公式,还要加上升降幂公式,让人眼花缭乱!  相似文献   

16.
一、角的概念与任意角的三角函数例1 根据下列条件写出角θ的集合: (1)角θ的终边在第四象限角的平分线上; (2)θ是第一象限的角; (3)角θ的始边在y轴的负半轴上,终边在x轴的负半轴上;  相似文献   

17.
笔者在[1]中提出建立以和角公式为纲的三角新体系,将诱导公式调整到和角公式之后,由和角公式导出,使三角的恒等变换成为一个完善的演绎体系:三角函数的定义——同角公式—和角公式——诱导公式;倍角公式;和差倍化积和积化和差这是针对传统教材而提出的。在传统教材中将诱导公式安排在和角公式之前,中间用三角函数的性质隔开,自然造成诱  相似文献   

18.
三角变换即三角式的求值、化简与证明,是五年制高职数学教学中的重点和难点内容。其实质是设法消除已知与未知之间的角、函数名称、结构及有关运算之间的种种差异,沟通已知与未知间关系的三角运算过程。在进行三角变换时,只要指导学生掌握好三看与三变,即“看角、看名、看式”与“变角、变名、变式”的转化方法,问题便可迎刃而解。  相似文献   

19.
正三角函数是中学教材中重要的基本初等函数之一,是历年高考的热点.由于涉及到三角的公式较多,求解有关三角函数求值问题时合理选用公式、灵活运用公式来简化解题就显得尤为重要了.那么如何合理选用公式、灵活运用公式呢?这是不少同学感到困惑的事.笔者根据自己平时的教学,先将一些常规的处理策略归纳如下.策略一、从"角"入手,寻找解题突破口所谓从"角"入手,是指挖掘已知条件中的角与待求式中角的内在联系,尽量将待求式中的角用已知条件中的角来代换.  相似文献   

20.
华罗庚曾说过:“数缺形时少直观,形缺数时难入微”.这就充分体现了数形结合思想的重要性.三角函数中借助于单位圆,我们可以形象而直观地认识任意角、任意角的三角函数、同角三角关系、诱导公式等,因此,单位圆贯穿于三角函数全章.以形助数,借助其直观性,有助于培养我们分析、解决问题的能力.现就其在三角问题中的几点应用,举例分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号