首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
解绝对值不等式通常都比较繁琐,本文就|f(x)|>g(x)与|f(x)|0恒成立,则不等式 |f(x)|>g(x) (1)与不等式 f(x)-g(x)>0 (2)同解。  相似文献   

2.
对于题型f(x)~(1/2)>g(x),很多参考书和许多同学在解此类不等式时都认为它等价于{f(x)≥0 g(x)<0,或f(x)≥0,g(x)>0,(*) f(x)>g~2(x).这种解法对吗?我们先看下面的例子:例题:解不等式α~2-x~2~(1/2)>2x-α(α>0).解:如果按照上面的解法有:原不等式等价于  相似文献   

3.
我们知道√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)<[f(x)]2.√g(x)<f(x)(=){f(x)≥0,g(x)≤0,g(x)>[f(x)]2.或{f(x)<0,g(x)≥0.将无理不等式转化为等价的代数不等式(组)来解,往往须考虑符号,运算复杂.下面介绍另一求法,其理论根据是一元连续实函数y=f(x)的根(存在)将其定义域分成的各个区间上具有保号性.此方法步骤如下:  相似文献   

4.
一、利用基本不等式或不等式的性质放缩例1 若g(x)=f(x) 1,f(x)=log2~(1/2)(x 1),m、n、t>0且n2=mt,求证:g(m) g(t)≥2g(n).  相似文献   

5.
<正>深入研究2017年全国卷导数压轴题中的不等式求参问题,对比常规解题方法,借切线分隔处理含参不等式,解答更显简洁与灵动.题1(2017年全国高考题)已知函数f(x)=ax~2-ax-xln x,且f(x)≥0.(1)求a;(2)略.常规解答(1)f(x)的定义域为(0,+∞).设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)≥0等价于g(x)≥0.  相似文献   

6.
不等式恒成立问题是高考中一类常见的典型问题.这类问题的解决,大多可用函数的观点来审视,用函数的有关性质来处理.而导数是研究函数性质的有力工具,因而将不等式f(x)≥g(x)恒成立转化为F(x)=f(x)-g(x)≥0恒成立问题,再用导数方法探讨F(x)的单调性及最值,就顺理成章了.一、利用函数的单调性例1(2006年全国卷Ⅱ)设函数f(x)=(x 1)ln(x 1).若对所有x≥0,都有f(x)≥ax成立,求实数a的取值范围.解:构造相应函数g(x)=(x 1)ln(x 1)-ax,于是不等式f(x)≥ax转化为g(x)≥g(0)对x≥0恒成立的问题.对g(x)求导数,得g′(x)=ln(x 1) 1-a.令g′(x)=0,解得x=e…  相似文献   

7.
含参数的等式或不等式的恒成立、存在性问题,是中常数学中的一个重要知识点,是学生对数学知识综合性、能力综合性的考查.一、含参数的不等式恒成立问题①对任意x1∈[a,b],存在x2∈[c,d],有f(x1)≥g(x2)成立,等价于f(x)min≥g(x)min.②对任意x1∈[a,b],x2∈[c,d],有f(x1)≥g(x2)成立,等价于f(x)min≥g(x)max.  相似文献   

8.
《中学数学教学》2005年第5期刊登了浙江省绍兴鲁迅中学孟利忠老师的一篇文章,题目为《函数中的不等式证明题的证法探究》,其中有这样一例:例9已知函数f(x)=ln(1 x)-x,g(x)=xlnx.(1)求函数f(x)的最大值;(2)若0相似文献   

9.
<正>一、多变量不等式,以其中一个变量为主元构造新函数对于双变量的不等式证明,可以采取"定主元,降辅元"的方法,即先把辅元当成常数,以主元为变量构造一个新的函数,再利用导数法证明不等式。例1已知函数f(x)=ln(1+x)-x,g(x)=xln x。(1)求函数f(x)的最大值;(2)设0相似文献   

10.
正文[1]通过对近六年的新课程高考卷中"已知含参a的不等式f(x)≥g(x)(x≥0)恒成立,求实数a的取值范围"一类导数压轴题的研究分析,给出了解决这一类问题的一种有效办法"逆否转化法",运用这种方法解题分3步:第1步(求充分性):由于题目隐含f(0)=g(0),故(?)·x≥0,f'(x)≥g'(x)(?)x≥0,f(x)≥g(x),由f'(x)≥g'(x)(x≥0)恒成立得出a的范围M(充分条件);第2步(验必要性):证明"(?)x≥0,f(x)≥  相似文献   

11.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

12.
近年来,高考试卷中经常出现不等式恒成立的问题,不等式恒成立与函数的最值即甬数图象的最值点密切相关,也就是利用极端思想的原理.不等式f(x)≥a恒成立,其实质就是f(x)的最小值大于或等于a,不等式f(x)≤a恒成立,实质是f(x)的最大值小于等于a.不等式f(x)≥g(x)恒成立实质是f(x)-g(x)的最大值大于等于0,不等式f(x)≤g(x)恒成立,实质是f(x)-g(x)的最大值小于等于0.这类问题有时可以用图象法解决.  相似文献   

13.
<正>1.差函数法。若证明f(x)x-1。(1)求函数f(x)的最大值;(2)设g(x)=  相似文献   

14.
构造函数,将不等式问题化为函数问题,再利用导数来解决,这为简化解题思路提供了新的方法.例1(2004全国卷二22题)已知函数f(x)=ln(1 x)-x,g(x)=xlnx,(Ⅰ)求函数f(x)的最大值.(Ⅱ)设0相似文献   

15.
文[1]给出了一个命题,并利用该命题简解了一类问题:"对x≥0,f(x)≥g(x)或f(x)≤g(x)恒成立,其中f(x)含参数a,试确定参数a的取值范围."简解程序是:对x≥0,只要对f(x)≥g(x)或f(x)≤g(x)两边取导数,再从f′(x)≥g′(x)或  相似文献   

16.
本文给出绝对值方程:|f(x)+g(x)|=|f(x)|+|g(x)|的简捷解法。定理,方程|f(x)+g(x)|=|f(x)|+|g(x)|与不等式f(x),g(x)≥0同解。证明:|f(x)+g(x)|=|g(x)|+|g(x)|[f(x)+g(x)]~2=[|f(x)|+|g(x)|]~2f~2(x)+2f(x)g(x)+g~2(x)=f~2(x)+2|f(x)g(x)|+g~2(x)f(x)g(x)=|f(x)g(x)|f(x)g(x)≥0。  相似文献   

17.
<正>在解不等式或恒成立问题中,有很大一部分题目是由函数单调性构造出来的,若能找出这些函数模型(即不等式或等式两边对应的同一函数),无疑会大大加快解决这些问题的速度.比如F(x)≥0能等价变形成f [g(x)]≥f [h(x)],然后利用函数f(x)的单调性,再转化为g(x)≥h(x)(或者g(x)≤h(x)),这种方法称为同构不等式法(等号成立时,称为同构等式法),简称同构法.  相似文献   

18.
<正>在人教版数学选修4-5《不等式选讲》中,我们学习了不等式|f(x)|>g(x)的两种解法,掌握了解绝对值不等式的关键是去"||"符号,去绝对值的依据是"||"的定义,解绝对值不等式的常用方法是分类讨论。解法一:根据绝对值的定义,将不等式|f(x)|>g(x)去绝对值,则|f(x)|>  相似文献   

19.
对于较复杂的分式不等式()()a f xb???<(1)然后一一求解,最后求它们的交集,但这种方法比较繁琐,而对于不等式组(1)可等价于()0,()0,()()0,()()0,()()0,()()0.g x g xf x ag x f x ag xf x bg x f x bg x???>?>???亦可等价于[f(x)?ag(x)][f(x)?bg(x)]<0,即有下列的结论:不等式()()()a f xb a b相似文献   

20.
设f(x)∈L^p[a,b],g(x)∈L^q[a,b],1≤p,q< ∞,α>0,β>0,1/p 1/q=1,本得到了一个Holder型不等式:∫a^bf(x)g(x)dx≤||f||p(α,β)^*||g||q(α^-1,β^-1)特别地,当f(x)g(x)≥0,α=β=1时,上述不等式便为经典的Holder型不等式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号