首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、什么是原型构造法先来看一简单例子:例1:证明组合性质C_(n 1)~m=C_n~(m 1) C_n~m.常规证法是利用组合数公式验证,现根据组合的意义,构造一个问题原型:考虑从n 1个运动员中选m个参赛,其组合数为C_(n 1)~m.分两种情况:队长上场和队长不上场,分别有C_n~(m-1)和C_n~m种组合,由加法原  相似文献   

2.
有些数学关系既不易理解也不易记忆,但是把它和准确、形象、生动的实例联系在一起,困难便消失了。组合数的两个性质就是这样。C_n~m=C_n~(n-m)表示从n个元素里挑m个元素出来和挑n-m个元素留下是一回事。公式C_n~m=C_(n-1)~m+C_(n-1)~(m-1)表示从n个元素中挑m个元素可以分两种情况。不挑元素A的有C_(n-1)~m种,一定挑元素A的有C_(n-1)~(m-1)种。“无A”、“有A”是这个公式的“题眼”,抓住“题眼”,问题就迎刃而解了。 C_n~m=C_(n-1)~m+C_(n-1)~(m-1)和C_n~m=C_n~(n-m)分别表达了  相似文献   

3.
灵活运用等比定理,可使常见题获得新颖解法。 例1 若C_n~m:C_n~(m 1):C_(n 1)~m=3:2:5,求m:n的值。 解 由已知条件易得C_N~m/3=C_n~(m 1)/2=C_(n 1)~m/5,  相似文献   

4.
公式C_(n+1)~m=C_n~m+C_n~(m-1)的一个应用利用组合数性质公式C_(n+1)~m=C_n~m+C=_n~(m-1)可以求形如{n(n+1)…(n+k-1)}的数列的前n项和S_n。 [例1] 求和 S=1·2·3+2·3·4+…+n(n+1)(n+2) 解:1/3!S=1·2·3/3!+2·3·4·/3!…+n(n+1)(n+2)/3! =C_3~3+C_4~3+…+C_(n+2)~3=(C_4~4+C_4~3)+C_5~3+…+C_(n+2)~3 =(C_5~4+C_5~3)+C_6~3+…+C_(n+2)~3=…=C_(n+2)~4+C_(n+2)~3 =C_(n+3)~4=n(n+1)(n+2)(n+3)/4!,  相似文献   

5.
约定:不言而喻,当m>n时,c_n~m=0。反之,零也可用c_n~m(m>n)表之。 公式1:C_(n+1)~m-C_n~m=C_n~(m-1)。 采用上述约定,公式中组合数的上标可不小于下标。从而,C_n~m  相似文献   

6.
我们知道,有这样两个组合公式: C_n~m=C_(n-1)~m+C_(n-1)~(m-1); C_r~r=C_(r+1)~r+C_(r+2)~r+…+C_(r+n+1)~r =C_(r+n)~(r+1)现在,我们来考虑组成这两个公式的各个组合数的倒数是否也能组成相应的公式?下面我们分别来讨这两个问题。定理1 设m,n为自然数,且m≥2,m≤n,则  相似文献   

7.
在学习过程中,我们遇到求形如(1+2x+3x~2)~5的展开的项数问题,通过分析,我们猜测如下命题。我用已学过的组合性质C_(n+1)~m=C_n~(m-1)+C_n~m及二项式定理证明了这一命题。命题:(sum from i=1 to m a_i)~n(n≥1,m≥1)的展开项数为C_(m+n-1)~n项。证明:我们对自然数m用数学归纳法。①、当m=1、2时,对一切自然数n命题显然成立。②、假设m=k时,对一切自然数n命题成立。当m=k+1时, 据归纳假设,上式右端展开后,其项数分别为:C_k~0项,C_k~1项,C_(k+1)~2项,C_(k+2)~3项,…,C_(k+n-1)~n项。又由于上式右端a_(k+1)的方次不同,它们之间不可能再合并同类项。故有 (sum from i=1 to k+1 a_i)~n展开项数=C_k~0+C_k~1+C_(k+1)~2+C_(k+2)~3  相似文献   

8.
在排列组合中,公式C_(n 1)~m=C_n~m C_n~(m-1)可以由计算证得,也可以逆过来用排列组合的概念来推导.即可将从n 1个不同的元素中每次取出m个的组合数,按其中某个特定元素“取”或“不取”来划分为两种情况.若取,则只须从另n个不同元素中取出m-1个,有  相似文献   

9.
组合数恒等式是初等数学中的一个重要课题。这类命题的特点是:结构比较复杂,解法灵活多变,初学者不易掌握。本文试通过若干实例,总结常用的解题思路。 1.恰当选择数学横型有些命题与组合的意义密切相关,待证等式的两边,可以看作同一组合问题用不同方法计算组合数的结果。对于这类命题,可以从选择数学模型人手。联系组合的定义,联系加法原理和乘法原理,用说理的方法来证明。例1 试证: C_r~oC_n~m+C_r~1C_n~(m-1)+C_r~2C_n~(m-2)+……+C_r~(m-1)C_n~1+C_r~mC_n~o=C_(n+r)~m。证明设有n+r个不同的元素,我们用两种方法计算每次取出m个元素的组合数:  相似文献   

10.
让我们先看下面两个例题: 例1 求证C_(n-1)~m C_(n-2)~m C_(n-3)~m… C_(m 1)~m C_m~m=C_n~(m 1) 证明:由等比数列求和公式知(1 x)~(n-1) (1 x)~(n-2) (1 x)~(n-3) … (1 x)~(m 1) (1 x)~m=((1 x)~n-(1 x)~m)/x上式左边x~m项的系数是 C_(n-1)~m C_(n-2)~m C_(n-3)~m … C_(n 1)~m C_m~m,上式右边的分子中,x~(m 1)项的系数是G_n~(m 1),应当相等,故等式成立。例2 证明: C_n~1 2C_n~2 3C_n~3 … C_n~n=n2~(n-1)。证明:将等式  相似文献   

11.
由公式C_n~k C_n~(k 1)=C_(n 1)~(k 1),可得:C_2~2 C_3~2 … C_n~2=C_(n 1)~3,sum from k=2 to nC_k~2=C_(n 1)~3,  相似文献   

12.
文[1]探讨了组合恒等式 C_n~k·C_k~m=C_n~m·C_(n-m)~(k-m)(m≤k≤n (*)的特点并给出了它的一些应用。 利用(*)式我们可以给出与组合数和等差数列有关的恒等式。文[1]中的例4就是一例,此处作为:  相似文献   

13.
定理m元一次不定方程x1 x2 … xm=n(m,n∈N,m,n≥2)的正整数解有C_(n-1)~(m-1)组,自然数解有C_(n m-1)~(m-1)组.证明①若xi为正整数,则这个不定方程正整数解的组数等价于x个小球之间有n-1个空隙,从中放入m-1个隔板,故其正整数解的组数为C_(n-1)~(m-1).  相似文献   

14.
1988年全国高中数学联赛第一试最后一题:已知a、b为正实数,且1/a 1/b=1,试证对每一个n∈N, (a b)~n-a~n-b~n≥2~(2n)-2~(n 1)(*) 这个不等式从形式上看较难证明,经过研究,笔者发现它有许多证法,择其简单的四种介绍如下: 证一应用二项式定理,得(a b)~n-a~n-b~n=C_n~1a~(n-1)b C_n~2a~(n-2)b~2 … C _n~(n-1)ab~(n-1) (1)根据组合数性质C_n~k=C_n~(n-k),由(1)得(a b)~n-a~n-b~n=C_n~1ab~(n-1) C_n~2a~2b~(n-2) 十… C_n~(n-1)a~(n-1)b (2)(1) (2)后两边除以2得  相似文献   

15.
全日制十年制高中数学课本第三册有这样一道习题:“证明:C_n~1 2C_n~2 3C_n~3 …… nC_n~n=n·2~(n-1)”[P160.第23题(2)]。此题在教学参考书上给出的证法是先证kC_n~k=nC_(n-1)~(k-1)成立,再对等式左边变形导出右边的结果而得证。笔者通过对该题的钻研发觉还有两种运用组合数性质对此题进行证明的方法不仅过程简捷,而且紧扣本章的基础知识,在教学中向学生讲解效果很好。现介绍如下,供参考。证法一:用数学归纳法证明。当n=1时,左边=C_1~1=1,右边=1·2~(1-1)=1 ∴左边=右边,即等式成立。设n=k时等式成立,即C_k~1 2C_k~2 3C_k~3 … kC_k~k=k·2~(k-1)成立。现将该式两边同加上“C_k~0 2C_k~1  相似文献   

16.
基本组合恒等式(其证明是容易的.本文从略)有这样的特点:它能把两个都和k有关的组合数的乘积C_n~kC_k~m变成只有一个与k有关而另一个与k无关的两个组合数的乘积C_n~m·C_(n-k)~(k-m)利用这一特点,当我们需要处理形如的组合和式时,可首先把整体上含有动标k的通项a_1C_n~kC_k~m“整容”成只在局部上含有动标k的通项a_kC_n~mC_(n-m)~(k-m),从而,可把只含定标的局部C_n~m作为各项的常值公因子从和式中提取出来,使和式得以简化,便于处理.下面兹举几例说明其应用.(高中代数第三册第二章复习参考题)证视k为C_k~1,则由基本恒…  相似文献   

17.
应用 k~2=k(k+1)/2+(k-1)k/2=C_(k+1)~2c+C_k~2,那么sum ∑ from k=1 to n=(C_2~2+…C_(n+1)~2)+(C_2~2+…+C_n~2)=C_(n+2)~2+C_(n+1)~8=((n+1)n(2n+1))/6  相似文献   

18.
先看一个例题: 例1 求证:C_n~1/-C_n~2/2+C_n~3/3-……+(-1)~(n-1)·C_n~n/n=1+1/2+1/3+……+1/n。求证式等号两边均有n项。可用递推方法证之。证明:记S_n=C_n~1/1-C_n~3/2+C_n~3/3-……+(-1)~(n-1),C_n~n/n。  相似文献   

19.
2008年高考安徽卷中有这样的一道选择题:设(1 x)~8=a_0 a_1x … a_8x~8,则a_0,a_1…,a_8中奇数的个数为____.(A)2 (B)3 (C)4 (D)5.由于a_0,a_1,…,a_8都是二项式系数,故考生大都是将它们翻译成数学式子后通过计算而获解的,当然若利用组合数性质C_n~m=C_n~(n-m) (m、n∈N_ ,且m≤n)去处理,则会更快一些.笔者认为本题难度不大,但是它容易使我们  相似文献   

20.
(a+b)~n展开式的二项式系数C_n~0、C_n~1、C_n~2…C_n~n从左至右先逐渐递增到最大值C_n~(n/2)(n为偶数)[或C_n~(n-1/2)、C_n~(n+1/2)(n为奇数)]时再逐渐减小,且有C_n~r=C_n~(n-r)(r=0,1,2,…n)。利用这个性质可以解组合不  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号